Genetically engineered biological drugs: a window of opportunity in cardiology practice
AbstractCardiovascular diseases are currently widespread not only in Russia, but also all over the world. The annual mortality from cardiovascular causes is about 17.5 million people, which is approximately 2 times more than the mortality from cancer. A possible cause of mortality from cardiovascular diseases (CVD) may be a decrease in patient compliance with treatment and the effectiveness of basic drug correction methods. Recently, biological drugs have entered cardiology practice, which are highly effective with a minimal risk of developing adverse reactions. This article presents a review of studies on the features of the use of genetically engineered biological drugs in cardiology for 2014–2024.
The aim is to describe the features and possibilities of using genetically engineered biological drugs in cardiology.
Objectives – to study the pharmacological features, effectiveness and possibility of using genetically engineered biological drugs in cardiology, to analyze modern publications on the main groups of biological drugs that are used in the treatment of cardiovascular diseases.
Material and methods. A literary review of scientific papers over the past 10 years was conducted. To write scientific material, articles from the PubMed platform were used, containing data that meet modern aspects of the use of certain genetically engineered biological drugs in cardiology.
Results. Based on the analysis of publications, a conclusion was made on the effectiveness and possibilities of using genetically engineered biological drugs in cardiology.
Keywords: genetically engineered biological drugs; monoclonal antibodies; hypercholesterolemia; atrial fibrillation; myocardial infarction; recurrent pericarditis; infective endocarditis
Funding. The study had no sponsor support.
Conflict of interest. The authors declare no conflict of interest.
For citation: Yakovleva D.R., Stepchenko M.A., Meshcherina N.S. Genetically engineered biological drugs: a window of opportunity in cardiology practice. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2024; 12 (4): 66–74. DOI: https://doi.org/10.33029/2309-1908-2024-12-4-66-74 (in Russian)
References
- Oganov R.G., Simanenkov V.I., Bakulin I.G., Bakulina N.V., Barbarash O.L., Boytsov S.A., et al. Comorbid pathology in clinical practice. Diagnostic and treatment algorithms. Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular Therapy and Prevention]. 2019; 18 (1): 5–66. (in Russian)
- Cubillos-Ruiz A., Guo T., Sokolovska A., Miller P.F., Collins J.J., Lu T.K., et al. Engineering living therapeutics with synthetic biology. Nat Rev Drug Discov. 2021; 20 (12): 941–60.
- Salugina S.O., Fedorov E.S. Genetically engineered biological drugs in the treatment of major monogenic autoinflammatory diseases: literature review and clinical observation. Sovremennaya revmatologiya [Modern Rheumatology]. 2021; (6): 95–100. (in Russian)
- Sabatine M.S., Giugliano R.P., Keech A.C., Honarpour N., Wiviott S.D., Murphy S.A., et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017; 376 (18): 1713–22. DOI: https://doi.org/10.1056/NEJMoa1615664
- Räber L., Ueki Y., Otsuka T., Losdat S., Häner J.D., Lonborg J., et al. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction: the PACMAN-AMI randomized clinical trial. JAMA. 2022; 327 (18): 1771–81.
- Klug E.Q., Llerena S., Burgess L.J., Fourie N., Scott R., Vest J., et al. Efficacy and safety of lerodalcibep in patients with or at high risk of cardiovascular disease: a randomized clinical trial. JAMA Cardiol. 2024; 9 (9): 800–7.
- Lopes R.D. Effect of alirocumab on incidence of atrial fibrillation after acute coronary syndromes: insights from the ODYSSEY OUTCOMES trial. Am J Med. 2022; 135 (7): 915–8.
- Fan L., Liu J., Hu W., Chen Z., Lan J., Zhang T., et al. Targeting pro-inflammatory T cells as a novel therapeutic approach to potentially resolve atherosclerosis in humans. Cell Res. 2024; 34 (6): 407–27.
- Ray K.K., Stoekenbroek R.M., Kallend D., Nishikido T., Leiter L.A., Landmesser U., et al. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 2019; 4 (11): 1067–75. DOI: https://doi.org/10.1001/jamacardio.2019.3502
- Ray K.K., Wright R.S., Kallend D., Koenig W., Leiter L.A., Raal F.J., et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020; 382 (16): 1507–19. DOI: https://doi.org/10.1056/NEJMoa1912387
- Adamstein N.H., Cornel J.H., Davidson M., Libby P., de Remigis A., Jensen C., et al. Association of interleukin 6 inhibition with ziltivekimab and the neutrophil-lymphocyte ratio: a secondary analysis of the RESCUE clinical trial. JAMA Cardiol. 2023; 8 (2): 177–81.
- Ridker P.M., Devalaraja M., Baeres F.M.M., Engelmann M.D.M., Hovingh G.K., Ivkovic M. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2021; 397 (10 289): 2060–9. DOI: https://doi.org/10.1016/S0140-6736(21)00520-1
- Svensson E.C., Madar A., Campbell C.D., He Y., Sultan M., Healey M.L., et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 2022; 7 (5): 521–8. DOI: https://doi.org/10.1001/jamacardio.2022.0386
- Sehested T.S.G., Bjerre J., Ku S., Chang A., Jahansouz A., Owens D.K., et al. Cost-effectiveness of canakinumab for prevention of recurrent cardiovascular events. JAMA Cardiol. 2019; 4 (2): 128–35.
- Rosenson R.S., Burgess L.J., Ebenbichler C.F., Baum S.J., Stroes E.S.G., Ali S., et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med. 2020; 383 (24): 2307–19.
- Raal F.J., Rosenson R.S., Reeskamp L.F., Hovingh G.K., Kastelein J.J.P., Rubba P., et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020; 383 (8): 711–20.
- Schmidt A.F., Carter J.-P.L., Pearce L.S., Wilkins J.T., Overington J.P., Hingorani A.D., et al. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020; 10: CD 011748.
- Yasaka M., Yokota H., Suzuki M., Asakura H., Yamane T., Ogi Y., et al. Idarucizumab for emergency reversal of the anticoagulant effects of dabigatran: final results of a Japanese postmarketing surveillance study. Cardiol Ther. 2023; 12 (4): 723–40.
- Joglar J.A., Chung M.K., Armbruster A.L., Benjamin E.J., Chyou J.Y., Cronin E.M., et al.; Peer Review Committee Members. 2023 ACC/AHA/ACCP/HRS Guideline for the diagnosis and management of atrial fibrillation: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2024; 149 (1): e1–156. DOI: https://doi.org/10.1161/CIR.000000000000119
- Yi B.А., Freedholm D., Widener N., Wang X., Simard E., Cullen C., et al. Pharmacokinetics and pharmacodynamics of Abelacimab (MAA868), a novel dual inhibitor of Factor XI and Factor Xia. J Thromb Haemost. 2022; 20 (2): 307–15.
- Verhamme P., Yi B.A., Segers A., Salter J., Bloomfield D., Büller H.R., et al.; ANT-005 TKA Investigators. Abelacimab for prevention of venous thromboembolism. N Engl J Med. 2021; 385 (7): 609–17. DOI: https://doi.org/10.1056/NEJMoa2105872
- Klein A.L., Imazio M., Cremer P., Brucato A., Abbate A., Fang F., et al.; RHAPSODY Investigators. Phase 3 trial of interleukin-1 trap rilonacept in recurrent pericarditis. N Engl J Med. 2021; 384 (1): 31–41. DOI: https://doi.org/10.1056/NEJMoa2027892
- Hettwer J., Hinterdobler J., Miritsch B., Deutsch M.A., Li X., Mauersberger C., et al. Interleukin-1β suppression dampens inflammatory leucocyte production and uptake in atherosclerosis. Cardiovasc Res. 2022; 118 (13): 2778–91. DOI: https://doi.org/10.1093/cvr/cvab337
- Abbate A., Toldo S., Marchetti C., Kron J., Van Tassell B.W., Dinarello C.A. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res. 2020; 126 (9): 1260–80. DOI: https://doi.org/10.1161/CIRCRESAHA.120.315937
- George M.J., Kleveland O., Garcia-Hernandez J., Palmen J., Lovering R., Wiseth R., et al. Novel insights into the effects of interleukin 6 antagonism in non-ST-segment-elevation myocardial infarction employing the SOMAscan proteomics platform. J Am Heart Assoc. 2020; 9 (12): e015628.
- Uneno Y., Nomura M., Hosokai T., Kurakake Y., Fuki M., Shiomi H., et al. Successful management of malignant pericarditis using nivolumab for metastatic esophageal squamous cell carcinoma. Intern Med. 2024; 63 (5): 677–80.
- Ali M.R., Darwish O.J., Alhuneafat L., Abdallah B.N., Saleh Y. Rechallenging nivolumab following immune checkpoint inhibitor-induced pericarditis. Proc (Bayl Univ Med Cent). 2022; 36 (1): 83–4. DOI: https://doi.org/10.1080/08998280.2022.2132367
- Kanbayashi Y., Shimizu T., Anzai M., Kawai R., Uchida M. Evaluation of cardiac adverse events with nivolumab using a Japanese real-world database. Clin Drug Investig. 2023; 43 (3): 177–84. DOI: https://doi.org/10.1007/s40261-023-01246-x
- Minamisawa M., Claggett B., Adams D., Kristen A.V., Merlini G., Slama M.S., et al. Association of patisiran, an RNA interference therapeutic, with regional left ventricular myocardial strain in hereditary transthyretin amyloidosis: the APOLLO study. JAMA Cardiol. 2019; 4 (5): 466–72. DOI: https://doi.org/10.1001/jamacardio.2019.0849
- Ioannou A., Fontana M., Gillmore J.D. Patisiran for the treatment of transthyretin-mediated amyloidosis with cardiomyopathy. Heart Int. 2023; 17 (1): 27–35. DOI: https://doi.org/10.17925/HI.2023.17.1.27
- Maurer M.S., Kale P., Fontana M., Berk J.L., Grogan M., Gustafsson F., Hung R.R., et al.; APOLLO-B Trial Investigators. Patisiran treatment in patients with transthyretin cardiac amyloidosis. N Engl J Med. 2023; 389 (17): 1553–65. DOI: https://doi.org/10.1056/NEJMoa2300757