To the content
2 . 2024

Metabolic and fibrous remodeling as the basis of age-associated cardiovascular pathology

Abstract

Numerous scientific and practical data indicate the role of systemic insulin resistance (hyperinsulinemia) in pathogenesis of age-associated cardiovascular and metabolic disorders, including heart failure, atherosclerotic diseases, obesity and diabetes mellitus. “Metabolic remodeling” is one of the key phrases when analyzing the processes of cellular aging and the body as a whole.

The results of studies of brown adipose tissue have demonstrated that maintaining the homeostasis of this organ is fundamentally important for suppressing the processes of initiation and progression of metabolic basis of cardiovascular pathology. In parallel with these metabolic processes, processes of tissue fibrosis occur, which record negative metabolic changes in structural and functional terms. Insulin-mediated metabolic disorders, mitochondrial exhaustion, and fibrotic processes occur predominantly synchronously. The mechanisms that promote synchronization of aging (sync-aging) are mysterious and interesting.

“Cenometabolic” or “senoprotein” are defined as circulating substances that cause synchronization of aging – their description requires the establishment of new concepts: age-related fibrosing diseases (A-FiD) and senometabolic-related diseases (SRD).

Researchers around the world are actively conducting comprehensive and high-quality studies aimed at identifying age-associated circulating substances. Senolytic approaches open up new ways to study aging. Senolysis, mediated by genetic/pharmacological/vaccination effects, causes not just inhibition, but also the reverse development of aging and pathological conditions in age-associated diseases. Suppression of prosenescent substances (senocule) and senolysis, the specific elimination of senescent cells, promise to be a next-generation therapy for cardiovascular diseases.

Keywords:metabolic remodeling; age-associated pathology; fibrosis; senolytics; senometabolics

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Obrezan A.G., Serezhina E.K., Obrezan A.A., Filippov A.E., Tuktarov A.M. Metabolic and fibrous remodeling as the basis of age-associated cardiovascular pathology. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2024; 12 (2): 33–9. DOI: https://doi.org/10.33029/2309-1908-2024-12-2-33-39 (in Russian)

References

1. Lopez-Otin C., Blasco M.A., Partridge L., Serrano M., Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023; 186: 243–78. DOI: https://doi.org/10.1016/j.cell.2022.11.001

2. Suda M., Shimizu I., Katsuumi G., Yoshida Y., Hayashi Y., Ikegami R., et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat Aging. 2021; 1: 1117–26. DOI: https://doi.org/10.1038/s43587-021-00151-2

3. Yoshida Y., Shimizu I., Hayashi Y., Ikegami R., Suda M., Katsuumi G., et al. Peptide vaccine for semaphorin3E ameliorates systemic glucose intolerance in mice with dietary obesity. Sci Rep. 2019; 9: 3858. DOI: https://doi.org/10.1038/s41598-019-40325-y

4. Yokoyama M., Shimizu I., Nagasawa A., Yoshida Y., Katsuumi G., Wakasugi T., et al. p53 plays a crucial role in endothelial dysfunction associated with hyperglycemia and ischemia. J Mol Cell Cardiol. 2019; 129: 105–17. DOI: https://doi.org/10.1016/j.yjmcc.2019.02.010

5. Yoshida Y., Shimizu I., Katsuumi G., Jiao S., Suda M., Hayashi Y., et al. p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload. J Mol Cell Cardiol. 2015; 85: 183–98. DOI: https://doi.org/10.1016/j.yjmcc.2015.06.001

6. Shimizu I., Yoshida Y., Moriya J., Nojima A., Uemura A., Kobayashi Y., et al. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab. 2013; 18: 491–504. DOI: https://doi.org/10.1016/j.cmet.2013.09.001

7. Minamino T., Orimo M., Shimizu I., Kunieda T., Yokoyama M., Ito T., et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009; 15: 1082–140. DOI: https://doi.org/10.1038/nm.2014

8. Yokoyama M., Okada S., Nakagomi A., Moriya J., Shimizu I., Nojima A., et al. Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity. Cell Rep. 2014; 7: 1691–703. DOI: https://doi.org/10.1016/j.celrep.2014.04.046

9. Shimizu I., Minamino T. Cellular senescence in arterial diseases. J Lipid Atheroscler. 2020; 9: 79–91. DOI: https://doi.org/10.12997/jla.2020.9.1.79

10. Shimizu I., Minamino T. Cellular senescence in cardiac diseases. J Cardiol. 2019; 74: 313–9. DOI: https://doi.org/10.1016/j.jjcc.2019.05.002

11. Shimizu I., Yoshida Y., Suda M., Minamino T. DNA damage response and metabolic disease. Cell Metab. 2014; 20: 967–77. DOI: https://doi.org/10.1016/j.cmet.2014.10.008

12. Katsuumi G., Shimizu I., Yoshida Y., Minamino T. Vascular senescence in cardiovascular and metabolic diseases. Front Cardiovasc Med. 2018; 5: 18. DOI: https://doi.org/10.3389/fcvm.2018.00018

13. Chen M.S., Lee R.T., Garbern J.C. Senescence mechanisms and targets in the heart. Cardiovasc Res. 2022; 118 (5): 1173–87. DOI: https://doi.org/10.1093/cvr/cvab161

14. Nelson G., Wordsworth J., Wang C., Jurk D., Lawless C., Martin- Ruiz C., et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell. 2012; 11: 345–49. DOI: https://doi.org/10. 1111/j.1474-9726.2012.00795.x

15. Baker D.J., Childs B.G., Durik M., Wijers M.E., Sieben C.J., Zhong J., et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016; 530: 184–9. DOI: https://doi.org/10.1038/nature16932

16. Johmura Y., Yamanaka T., Omori S., Wang T.W., Sugiura Y., Matsumoto M., et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science. 2021; 371: 265–70. DOI: https://doi.org/10.1126/science.abb5916

17. Chang J., Wang Y., Shao L., Laberge R.M., Demaria M., Campisi J., et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016; 22: 78–83. DOI: https://doi.org/10.1038/nm.4010

18. Roos C.M., Zhang B., Palmer A.K., Ogrodnik M.B., Pirtskhalava T., Thalji N.M., et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 2016; 15: 973–7. DOI: https://doi.org/10.1111/acel.12458

19. Novais E.J., Tran V.A., Johnston S.N., Darris K.R., Roupas A.J., Sessions G.A., et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun. 2021; 12: 5213. DOI: https://doi.org/10.1038/s41467-021-25453-2

20. Xu M., Pirtskhalava T., Farr J.N., Weigand B.M., Palmer A.K., Weivoda M.M., et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018; 24: 1246–56. DOI: https://doi.org/10.1038/s41591-018-0092-9

21. Hickson L.J., Langhi Prata L.G.P., Bobart S.A., Evans T.K., Giorgadze N., Hashmi S.K., et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019; 47: 446–56. DOI: https://doi.org/10.1016/j.ebiom.2019.08.069

22. Hsiao Y.T., Shimizu I., Yoshida Y., Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen. 2022; 42: 2. DOI: https://doi.org/10.1186/s41232-021-00187-2

23. Ikegami R., Shimizu I., Yoshida Y., Minamino T. Metabolomic analysis in heart failure. Circ J. 2018; 82: 10–6. DOI: https://doi.org/10.1253/circj.CJ-17-1184

24. Lucas V., Cavadas C., Aveleira C.A. Cellular senescence: from mechanisms to current biomarkers and senotherapies. Pharmacol Rev. 2023; 75 (4): 675–713. DOI: https://doi.org/10.1124/pharmrev.122.000622

25. Justice J.N., Nambiar A.M., Tchkonia T., LeBrasseur N.K., Pascual R., Hashmi S.K., et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. 2019; 40: 554–63. DOI: https://doi.org/10.1016/j.ebiom.2018.12.052

26. Islam M.T., Tuday E., Allen S., Kim J., Trott D.W., Holland W.L., et al. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell. 2023; 22 (2): e13767. DOI: https://doi.org/10.1111/acel.13767

27. Murakami T., Inagaki N., Kondoh H. Cellular senescence in diabetes mellitus: distinct senotherapeutic strategies for adipose tissue and pancreatic β cells. Front Endocrinol (Lausanne). 2022; 13: 869414. DOI: https://doi.org/10.3389/fendo.2022.869414

28. Suda M., Shimizu I., Katsuumi G., Hsiao C.L., Yoshida Y., Matsumoto N., et al. Glycoprotein nonmetastatic melanoma protein B regulates lysosomal integrity and lifespan of senescent cells. Sci Rep. 2022; 12: 6522. DOI: https://doi.org/10.1038/s41598-022-10522-3

29. Fenzl A., Kiefer F.W. Brown adipose tissue and thermogenesis. Horm Mol Biol Clin Investig. 2014; 19 (1): 25–37. DOI: https://doi.org/10.1515/hmbci-2014-0022

30. Cypess A.M., Lehman S., Williams G., Tal I., Rodman D., Goldfine A.B., et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009; 360: 1509–17. DOI: https://doi.org/10.1056/NEJMoa0810780

31. Darcy J., Tseng Y.H. ComBATing aging-does increased brown adipose tissue activity confer longevity? Geroscience. 2019; 41 (3): 285–96. DOI: https://doi.org/10.1007/s11357-019-00076-0

32. Shimizu I., Aprahamian T., Kikuchi R., Shimizu A., Papanicolaou K.N., MacLauchlan S., et al. Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest. 2014; 124: 2099–112. DOI: https://doi.org/10.1172/JCI71643

33. Hayashi Y., Shimizu I., Yoshida Y., Ikegami R., Suda M., Katsuumi G., et al. Coagulation factors promote brown adipose tissue dysfunction and abnormal systemic metabolism in obesity. iScience. 2022; 25: 104547. DOI: https://doi.org/10.1016/j.isci.2022.104547

34. Furuuchi R., Shimizu I., Yoshida Y., Katsuumi G., Suda M., Kubota Y., et al. Endothelial SIRT-1 has a critical role in the maintenance of capillarization in brown adipose tissue. iScience. 2022; 25: 105424. DOI: https://doi.org/10.1016/j.isci.2022.105424

35. Ikegami R., Shimizu I., Sato T., Yoshida Y., Hayashi Y., Suda M., et al. Gamma-aminobutyric acid signaling in brown adipose tissue promotes systemic metabolic derangement in obesity. Cell Rep. 2018; 24: 2827–837.e5. DOI: https://doi.org/10.1016/j.celrep.2018.08.024

36. Bartelt A., Bruns O.T., Reimer R., Hohenberg H., Ittrich H., Peldschus K., et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011; 17: 200–5. DOI: https://doi.org/10.1038/nm.2297

37. Halberg N., Khan T., Trujillo M.E., Wernstedt-Asterholm I., Attie A.D., Sherwani S., et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009; 29: 4467–83. DOI: https://doi.org/10.1128/MCB.00192-09

38. Yoshida Y., Shimizu I., Shimada A., Nakahara K., Yanagisawa S., Kubo M., et al. Brown adipose tissue dysfunction promotes heart failure via a trimethylamine N-oxide-dependent mechanism. Sci Rep. 2022; 12: 14883. DOI: https://doi.org/10.1038/s41598-022-19245-x

39. Lushchak O., Schosserer M., Grillari J. Senopathies-diseases associated with cellular senescence. Biomolecules. 2023; 13 (6): 966. DOI: https://doi.org/10.3390/biom13060966

40. Lindstrom M., DeCleene N., Dorsey H., Fuster V., Johnson C.O., LeGrand K.E., et al. Global burden of cardiovascular diseases and risks collaboration, 1990–2021. J Am Coll Cardiol. 2022; 80 (25): 2372–425. DOI: https://doi.org/10.1016/j.jacc.2022.11.001

41. Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019; 139 (10): e56–528. DOI: https://doi.org/10.1161/CIR.0000000000000659

42. Lakatta E.G., Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part I: aging arteries: a «set up» for vascular disease. Circulation. 2003; 107 (1): 139–46. DOI: https://doi.org/10.1161/01.cir.0000048892.83521.58

43. Lettino M., Mascherbauer J., Nordaby M., Ziegler A., Collet J.P., Derumeaux G., et al. Cardiovascular disease in the elderly: proceedings of the European society of cardiology-cardiovascular round table. Eur J Prev Cardiol. 2022; 29 (10): 1412–24. DOI: https://doi.org/10.1093/eurjpc/zwac033

44. Li X., Li C., Zhang W., Wang Y., Qian P., Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther. 2023; 8 (1): 239. DOI: https://doi.org/10.1038/s41392-023-01502-8

45. Liberale L., Montecucco F., Tardif J.-C., Libby P., Camici G.G. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur. Heart J. 2020; 41 (31): 2974–82. DOI: https://doi.org/10.1093/eurheartj/ehz961

46. Sanada F., Taniyama Y., Muratsu J., Otsu R., Shimizu H., Rakugi H., et al. Source of chronic inflammation in aging. Front Cardiovasc Med. 2018; 5: 12. DOI: https://doi.org/10.3389/fcvm.2018.00012

47. Abdellatif M., Rainer P.P., Sedej S., Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol. 2023; 20 (11): 754–77. DOI: https://doi.org/10.1038/s41569-023-00881-3

48. Galluzzi L., Kepp O., Trojel-Hansen C., Kroemer, G. Mitochondrial control of cellular life, stress, and death. Circ Res. 2012: 111 (9): 1198–207. DOI: https://doi.org/10.1161/CIRCRESAHA.112.268946

49. Lesnefsky E.J., Chen Q., Hoppel C.L. Mitochondrial metabolism in aging heart. Circ Res. 2016; 118 (10): 1593–611. DOI: https://doi.org/10.1161/CIRCRESAHA.116.307505

50. Marchi S., Guilbaud E., Tait S.W.G., Yamazaki T., Galluzzi L. Mitochondrial control of inflammation. Nat Rev Immunol. 2023; 23 (3): 159–73. DOI: https://doi.org/10.1038/s41577-022-00760-x

51. Wein T., Sorek R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol. 2022; 22 (10): 629–38. DOI: https://doi.org/10. 1038/s41577-022- 00705-4

52. Harapas C.R., Idiiatullina E., Al-Azab M., Hrovat-Schaale K., Reygaerts T., Steiner A., et al. Organellar homeostasis and innate immune sensing. Nat Rev Immunol. 2022; 22 (9): 535–49. DOI: https://doi.org/10.1038/s41577-022-00682-8

53. Dai D.-F., Chen T., Johnson S.C., Szeto H., Rabinovitch P.S. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal. 2012; 16: 1492–526.

54. Fajemiroye J.O., da Cunha L.C., Saavedra-Rodríguez R., Rodrigues K.L., Naves L.M., Mouro A.A., et al. Aging-induced biological changes and cardiovascular diseases. Biomed Res Int. 2018; 2018: e7156435.

55. Singam N.S.V., Fine C., Fleg J.L. Cardiac changes associated with vascular aging. Clin Cardiol. 2019; 43: 92–8.

56. Clayton Z.S., Rossman M.J., Mahoney S.A., Venkatasubramanian R., Maurer G.S., Hutton D.A., et al. Cellular senescence contributes to large elastic artery stiffening and endothelial dysfunction with aging: amelioration with senolytic treatment. Hypertension. 2023; 80 (10): 2072–87. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.123.21392

57. Lakatta E.G. Cardiovascular aging research: the next horizons. J Am Geriatr Soc. 1999; 47: 613–25.

58. Tallquist M.D., Molkentin J.D. Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol. 2017; 14: 484–91.

59. Biernacka A., Frangogiannis N.G. Aging and cardiac fibrosis. Aging Dis. 2011; 2: 158–73.

60. Bernhard D., Laufer G. The aging cardiomyocyte: a mini-review. Gerontology. 2008; 54: 24–31.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Andrey G. Obrezan
MD, Professor, Head of the Hospital Therapy Department of the Saint Petersburg State University, Chief Physician of SOGAZ MEDICINE Clinical Group, St. Petersburg, Russian Federation

Journals of «GEOTAR-Media»