Hypertriglyceridemia and coronary heart disease: a contemporary view at the problem
AbstractHypertriglyceridemia is a widespread polyetiological dyslipidemia, characterized by an increased residual risk of developing atherosclerotic cardiovascular diseases. This review of the scientific literature presents current postulates regarding the relationship between the discussed lipid metabolism disorder and coronary heart disease, allowing us to form a more relevant understanding of this problem. Thus, at present, in accordance with current sources of information and the most representative scientific works, the multifaceted relationship between coronary heart disease and hypertriglyceridemia is beyond doubt, both in chronic coronary syndromes and in acute coronary events. The triglyceride-glucose index and plasma atherogenic index are effective clinical tools in the prognostic assessment of the occurrence of major cardiovascular events in patients with hypertriglyceridemia and coronary artery disease. The study of pharmacological agents aimed at reducing the level of triglycerides in the blood has shown conflicting results, and therefore, there is no reliable evidence of the effect of triglycerides-lowering on reducing cardiovascular mortality and the incidence of acute coronary events in coronary heart disease.
Keywords:hypertriglyceridemia; dyslipidemia; triglycerides; atherosclerosis; coronary heart disease; acute coronary syndrome
Funding. The study had no sponsor support.
Conflict of interest. The authors declare no conflict of interest.
Authors’ contributions. The authors declare their authorship to be in compliance with the international ICMJE criteria. All authors equally participated in the preparation of the publication: developing the concept of the article, obtaining and analyzing literary data, writing and editing the text of the article, checking and approving the text of the article.
For citation: Shomin A.V., Serezhina E.K., Obrezan A.G. Hypertriglyceridemia and coronary heart disease: a contemporary view at the problem. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2024; 12 (2): 26–32. DOI: https://doi.org/10.33029/2309-1908-2024-12-2-26-32 (in Russian)
References
1. Saadatagah S., Pasha A.K., Alhalabi L., Sandhyavenu H., Farwati M., Smith C.Y., et al. Coronary heart disease risk associated with primary isolated hypertriglyceridemia; a population‐based study. J Am Heart Assoc. 2021; 10: e019343. DOI: https://doi.org/10.1161/JAHA.120.019343
2. Toth P.P., Granowitz C., Hull M., Liassou D., Anderson A., Philip S. High triglycerides are associated with increased cardiovascular events, medical costs, and resource use: a real‐world administrative claims analysis of statin‐treated patients with high residual cardiovascular risk. J Am Heart Assoc. 2018; 7: e008740. DOI: https://doi.org/10.1161/JAHA.118.008740
3. Klempfner R., Erez A., Sagit B.‐Z., Goldenberg I., Fisman E., Kopel E., et al. Elevated triglyceride level is independently associated with increased all‐cause mortality in patients with established coronary heart disease: twenty‐two-year follow‐up of the bezafibrate infarction prevention study and registry. Circ Cardiovasc Qual Outcomes. 2016; 9: 100–8. DOI: https://doi.org/10.1161/CIRCOUTCOMES.115.002104
4. Toth P.P., Fazio S., Wong N.D., et al. Risk of cardiovascular events in patients with hypertriglyceridaemia: a review of real-world evidence. Diabetes Obes Metab. 2020; 22 (3): 279–89. DOI: https://doi.org/10.1111/dom.13921
5. Yanyue Ji, Chunlin Bai. Research progress of hypertriglyceridemia and coronary heart disease. Heart Mind. 2018; 2 (2): 40. DOI: https://doi.org/10.4103/hm.hm_2_19
6. Packard C.J., Boren J., Taskinen M.-R. Causes and consequences of hypertriglyceridemia. Front Endocrinol. 2020; 11: 252. DOI: https://doi.org/10.3389/fendo.2020.00252
7. Borün J., Packard C.J., Taskinen M.R. The roles of ApoC–III on the metabolism of triglyceride-rich lipoproteins in humans. Front Endocrinol (Lausanne). 2020; 28 (11): 474. DOI: https://doi.org/10.3389/fendo.2020.00474
8. Reiner Ž. Hypertriglyceridaemia and risk of coronary artery disease. Nat Rev Cardiol. 2017; 14: 401–11. DOI: https://doi.org/10.1038/nrcardio.2017.31
9. Nordestgaard B.G. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016; 118 (4): 547–63. DOI: https://doi.org/10.1161/CIRCRESAHA.115.306249
10. Mortensen M.B., Afzal S., Nordestgaard B.G., Falk E. The high-density lipoprotein-adjusted SCORE model worsens SCORE-based risk classification in a contemporary population of 30,824 Europeans: the Copenhagen General Population Study. Eur Heart J. 2015; 36 (36): 2446–53. DOI: https://doi.org/10. 1093/eurheartj/ehv251
11. Panov A.V., Kozulin V. Yu., Kudaev Yu.A. Stable coronary heart disease: focus on plaque and hypertriglyceridemia. Ateroskleroz i dislipidemii [Atherosclerosis and Dyslipidemia]. 2023; (4): 18–26. (in Russian)
12. Nichols G.A., Philip S., Reynolds K., Granowitz C.B., Fazio S. Increased cardiovascular risk in hypertriglyceridemic patients with statin-controlled LDL cholesterol. J Clin Endocrinol Metab. 2018; 103 (8): 3019–27. DOI: https://doi.org/10. 1210/jc.2018–00470
13. Ganda O.P., Bhatt D.L., Mason R.P., Miller M., Boden W.E. Unmet need for adjunctive dyslipidemia therapy in hypertriglyceridemia management. J Am Coll Cardiol. 2018; 72 (3): 330–43. DOI: https://doi.org/10. 1016/j.jacc.2018.04.061
14. Maloberti A., La Rosa A., Toscani G., Caccia A., Gualini E., Pezzoli S., et al. Hypertriglyceridemia in patients with acute and chronic coronary syndrome: prevalence and their association with extreme cardiovascular risk and left ventricular function hypertriglyceridemia in patients with acute and chronic coronary syndrome: prevalence. Eur Heart J Suppl. 2024; 26 (suppl 2): ii29. DOI: https://doi.org/10.1093/eurheartjsupp/suae036.065
15. Schwartz G.G., Abt M., Bao W., et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015; 65: 2267–75.
16. Han S.H., Nicholls S.J., Sakuma I., Zhao D., Koh K.K. Hypertriglyceridemia and cardiovascular diseases: revisited. Korean Circ J. 2016; 46 (2): 135–44. DOI: https://doi.org/10.4070/kcj.2016.46.2.135
17. Toth P.P., Shah P.K., Lepor N.E. Targeting hypertriglyceridemia to mitigate cardiovascular risk: a review. Am J Prev Cardiol. 2020; 3: 100086. DOI: https://doi.org/10.1016/j.ajpc.2020.100086
18. Ference B.A., Kastelein J.J.P., Ray K.K., et al. Association of triglyceride-lowering LPL variants and LDL–C-lowering LDLR variants with risk of coronary heart disease. JAMA. 2019; 321: 364–73.
19. Bhatt D.L., Steg P.G., Miller M., Brinton E.A., Jacobson T.A., Ketchum S.B., et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019; 380: 11–22.
20. Ferrières J., Bataille V., Puymirat E., Schiele F., Simon T., Danchin N. Applicability of the REDUCE‐IT trial to the FAST‐MI registry: are the results of randomized trials relevant in routine clinical practice? Clin Cardiol. 2020; 43 (11): 1260–5.
21. Budoff M., Brent Muhlestein J., Le V.T., May H.T., Roy S., Nelson J.R. Effect of Vascepa (icosapent ethyl) on progression of coronary atherosclerosis in patients with elevated triglycerides (200–499 mg/dL) on statin therapy: rationale and design of the EVAPORATE study. Clin Cardiol. 2018; 41: 13–9.
22. Borow K.M., Nelson J.R., Mason R.P. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis. Atherosclerosis. 2015; 242: 357–66.
23. Nelson J.R., True W.S., Le V., Mason R.P. Can pleiotropic effects of eicosapentaenoic acid (EPA) impact residual cardiovascular risk? Postgrad Med. 2017; 129: 822–7.
24. Claessen B.E., Guedeney P., Gibson C.M., Angiolillo D.J., Cao D., Lepor N., et al. Lipid management in patients presenting with acute coronary syndromes: a review. J Am Heart Assoc. 2020; 9: e018897. DOI: https://doi.org/10.1161/JAHA.120.018897
25. Nelson J.R., Wani O., May H.T., Budoff M. Potential benefits of eicosapentaenoic acid on atherosclerotic plaques. Vascul Pharmacol. 2017; 91: 1–9. DOI: https://doi.org/10.1016/j.vph.2017.02.004
26. Watanabe T., Ando K., Daidoji H., Otaki Y., Sugawara S., Matsui M., et al.; CHERRY Study Investigators. A randomized controlled trial of eicosapentaenoic acid in patients with coronary heart disease on statins. J Cardiol. 2017; 70 (6): 537–44. DOI: https://doi.org/10.1016/j.jjcc.2017.07.007
27. Budoff M.J., Bhatt D.L., Kinninger A., Lakshmanan S., Muhlestein J.B., Le V.T., et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur Heart J. 2020; 41 (40): 3925–32. DOI: https://doi.org/10.1093/eurheartj/ehaa652
28. Visseren F.L.J., Mach F., Smulders Y.M., Carballo D., Koskinas K.C., Back M., et al.; ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42 (34): 3227–37. DOI: https://doi.org/10.1093/eurheartj/ehab484
29. Fan W., Philip S., Granowitz C., Toth P.P., Wong N.D. Hypertriglyceridemia in statin-treated US adults: the National Health and Nutrition Examination Survey. J Clin Lipidol. 2018; 13: 100–108.
30. Holmes M.V., Asselbergs F.W., Palmer T.M., Drenos F., Lanktree M.B., Nelson C.P., et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 2015; 36: 539–50.
31. Allara E., Morani G., Carter P., Gkatzionis A., Zuber V., Foley C.N., et al. Genetic determinants of lipids and cardiovascular disease outcomes. Circ Genom Precis Med. 2019; 12: e002711.
32. Mszar R., Bart S., Sakers A., Soffer D., Karalis D.G. Current and emerging therapies for atherosclerotic cardiovascular disease risk reduction in hypertriglyceridemia. J Clin Med. 2023; 12 (4): 1382. DOI: https://doi.org/10.3390/jcm12041382
33. Nichols G.A., Philip S., Reynolds K., Granowitz C.B., Fazio S. Increased residual cardiovascular risk in patients with diabetes and high vs. normal triglycerides despite statin-controlled LDL cholesterol. Diabetes Obes Metab. 2019; 21 (2): 366–71.
34. Choe H.J., Park S., Han K.D., Moon M.K., Koo B.K. Contribution of hypertriglyceridemia to ischemic cardiovascular disease in Korean women: a nationwide population-based study. J Clin Lipidol. 2022; 16 (1): 83–93. DOI: https://doi.org/10.1016/j.jacl.2021.11.008
35. Koo B.K., Park S., Han K.D., Moon M.K. Hypertriglyceridemia is an independent risk factor for cardiovascular diseases in Korean adults aged 30–49 years: a nationwide population-based study. J Lipid Atheroscler. 2021; 10 (1): 88–98.
36. Choi E.K. Cardiovascular research using the Korean National Health Information Database. Korean Circ J. 2020; 50: 754–72.
37. Newman C.B., Blaha M.J., Boord J.B., Cariou B., Chait A., Fein H.G., et al. Lipid management in patients with endocrine disorders: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2020; 105 (12): dgaa674.
38. Chait A., Ginsberg H.N., Vaisar T., Heinecke J.W., Goldberg I.J., Bornfeldt K.E. Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes. 2020; 69: 508–16.
39. Gill P.K., Dron J.S., Berberich A.J., Wang J., McIntyre A.D., Cao H., et al. Combined hyperlipidemia is genetically similar to isolated hypertriglyceridemia. J Clin Lipidol. 2021; 15: 79–87.
40. Arca M., Veronesi C., D’Erasmo L., Borghi C., Colivicchi F., De Ferrari G.M., et al.; Local Health Units Group. Association of hypertriglyceridemia with all-cause mortality and atherosclerotic cardiovascular events in a low-risk Italian population: the TG-REAL retrospective cohort analysis. J Am Heart Assoc. 2020; 9: e015801.
41. Grundy S.M., Stone N.J., Bailey A.L., Beam C., Birtcher K.K., Blumenthal R.S., et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APHA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019; 73: e285–350. DOI: https://doi.org/10.1016/j.jacc.2018.11.003
42. Sniderman A.D., Thanassoulis G., Glavinovic T., Navar A.M., Pencina M., Catapano A., et al. Apolipoprotein B particles and cardiovascular disease. JAMA Cardiol. 2019; 4: 1287–95. DOI: https://doi.org/10.1001/jamacardio.2019.3780
43. Yueqiao S., Wenjun F., Chao H., Jingyi L., Lixian S. Atherogenic index of plasma, triglyceride-glucose index and monocyte-to-lymphocyte ratio for predicting subclinical coronary artery disease. Am J Med Sci. 2021; 362: 285–90.
44. Mao Q., Zhou D., Li Y., Wang Y., Xu S.C., Zhao X.H. The triglyceride-glucose index predicts coronary artery disease severity and cardiovascular outcomes in patients with non-ST-segment elevation acute coronary syndrome. Dis Markers 2019; 2019: e6891537.
45. Erdoğan A., İnan D., Genç Ö., Yıldız U., Demirtola A.İ., Çetin İ., et al. The triglyceride–glucose index might be a better indicator for predicting poor cardiovascular outcomes in chronic coronary syndrome. J Clin Med. 2023; 12 (19): 6201. DOI: https://doi.org/10.3390/jcm12196201
46. Krittanawong C., Khawaja M., Virk H.U.H., et al. Strategies for chronic coronary disease: a brief guide for clinicians. NPJ Cardiovasc Health. 2024; 1: 6. DOI: https://doi.org/10.1038/s44325–024–00006-w
47. Zheng Y., Li C., Yang J., Seery S., Qi Y., Wang W., et al. Atherogenic index of plasma for non-diabetic, coronary artery disease patients after percutaneous coronary intervention: a prospective study of the long-term outcomes in China. Cardiovasc Diabetol. 2022; 21 (1): 29.
48. Alifu J., Xiang L., Zhang W., Qi P., Chen H., Liu L., et al. Association between the atherogenic index of plasma and adverse long-term prognosis in patients diagnosed with chronic coronary syndrome. Cardiovasc Diabetol, 2023; 22 (1): 255. DOI: https://doi.org/10.1186/s12933–023–01989-z
49. Suleymanoglu M., Rencuzogullari I., Karabag Y., Cagdas M., Yesin M., Gumusdag A., et al. The relationship between atherogenic index of plasma and no-reflow in patients with acute ST-segment elevation myocardial infarction who underwent primary percutaneous coronary intervention. Int J Cardiovasc Imaging. 2020; 36 (5): 789–96.