To the content
1 . 2024

Alcoholic cardiomyopathy: literature review

Abstract

Alcoholic cardiomyopathy (ACMP) is the most common form of myocardial damage caused by ethanol. The effects of ethanol on the myocardium are diverse and multi-faceted. Ethanol affects the composition and permeability of the plasma membrane, the functioning of cell channels, the activity of connexin and desmosomal contacts, the sensitivity of sarcomeres to calcium ions, and the structure of the cytoskeleton of myocytes. Particular importance in the pathogenesis of ACMP is connected with the ability of ethanol to cause structural and functional changes in mitochondria, induce apoptosis and autophagy, and disrupt protein synthesis.

ACMP is a variant of secondary dilated cardiomyopathy of current genesis with all the clinical manifestations and consequences of the latter: enlargement of the heart chambers, low ejection fraction and progressive cardiac insufficiency, various cardiac arrhythmias. A distinctive feature of ACMP is the potential reversibility of structural and functional changes in the myocardium when abstaining from ethanol consumption. Abstinence, along with the duration of the QRS interval, the level of systolic blood pressure, the functional class of heart failure according to the NYHA classification, and the presence of pulmonary hypertension, are considered as predictors of an unfavorable prognosis.

The treatment of ACMP consists of heart failure and arrhythmic syndrome correction in accordance with existing clinical recommendations provisions. In the terminal stage o f the disease, the possibility of installing a cardioverter defibrillator and heart transplantation is considered. New strategies for the treatment of patients with ACMP are being developed, aimed at reducing myocyte hypertrophy, interstitial fibrosis and persistent apoptosis, as well as stimulating cardiomyocyte regeneration.

Keywords:alcoholic cardiomyopathy; ethanol; review

Funding. The study had no sponsor support.

Conflict of interest. The author declares no conflict of interest.

For citation: Klemenov A.V. Alcoholic cardiomyopathy: literature review. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2024; 12 (1): 44–9. DOI: https://doi.org/10.33029/2309-1908-2024-12-1-44-49 (in Russian)

References

1. GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018; 392 (10152) (22): 1015–35. DOI: https://www.doi.org/10.1016/S0140-6736(18)31310-2

2. Day E., Rudd J.H.F. Alcohol use disorders and the heart. Addiction. 2019; (114): 1670–8. DOI: https://www.doi.org/10.1111/add.14703

3. George A., Figueredo V.M. Alcoholic cardiomyopathy: A review. J Card Fail. 2011; (17): 844–9. DOI: https://www.doi.org/10.1016/j.cardfail.2011.05.008

4. Kuznetsova P.O. Alcohol mortality in Russia: assessment using data from a representative survey. Naselenie i ekonomika [Population and economy]. 2020; 4 (3): 75–95. DOI: https://www.doi.org/10.3897/popecon.4.e51653 (in Russian)

5. Molina P.E., Gardner J.D., Souza-Smith F.M., Whitaker A.M. Alcohol abuse: Critical pathophysiological processes and contribution to disease burden. Physiology (Bethesda). 2014; (29): 203–15. DOI: https://www.doi.org/10.1152/physiol.00055.2013

6. Oliveira G., Beezer A.E., Hadgraft J., Lane M.E. Alcohol enhanced permeation in model membranes. Part II. Thermodynamic analysis of membrane partitioning. Int J Pharm. 2011; 420 (2): 216–22. DOI: https://www.doi.org/10.1016/j.ijpharm.2011.08.037

7. Hu C., Huang C., Li J., et al. Causal associations of alcohol consumption with cardiovascular diseases and all-cause mortality among Chinese males. Am J Clin Nutr. 2022; 116 (3): 771–9. DOI: https://www.doi.org/10.1093/ajcn/nqac159

8. Laurent D., Edwards J.G. Alcoholic Cardiomyopathy: Multigenic Changes Underlie Cardiovascular Dysfunction. J Cardiol Clin Res. 2014; (2): 1022. PMID: 26478905.

9. Joaquim Fernandez-Sola. The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients. 2020; 12 (2): 572. DOI: https://www.doi.org/10.3390/nu12020572

10. Noritake K., Aki T., Kimura M., et al. Restoration of YAP activation rescues HL-1 cardiomyocytes from apoptotic death by ethanol. J Toxicol Sci. 2017; 42 (5): 545–51. DOI: https://www.doi.org/10.2131/jts.42.545

11. Dinis-Oliveira R.J. Oxidative and Non-Oxidative Metabolomics of Ethanol. Curr Drug Metab. 2016; (17): 327–35. DOI: https://www.doi.org/10.2174/1389200217666160125113806

12. Steiner J.L., Lang C.H. Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol. 2017; (89): 125–35. DOI: https://www.doi.org/10.1016/j.biocel.2017.06.009

13. Matyas C., Varga Z.V., Mukhopadhyay P., et al. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis. Am J Physiol Heart Circ Physiol. 2016; (310): 1658–70. DOI: https://www.doi.org/10.1152/ajpheart.00214.2016

14. Liu W., Zhao M., Zhang X., et al. Alcohol Intake Provoked Cardiomyocyte Apoptosis Via Activating Calcium-Sensing Receptor and Increasing Endoplasmic Reticulum Stress and Cytosolic [Ca2+]i. Cell Biochem Biophys. 2023; 81 (4): 707–16. DOI: https://www.doi.org/10.1007/s12013-023-01167-8

15. Gupta R., Ambasta R.K., Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci. 2021; 78 (24): 8001–47. DOI: https://www.doi.org/10.1007/s00018-021-04004-4

16. Del Re D.P., Amgalan D., Linkermann A., et al. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev. 2019; (9): 1765–817. DOI: https://www.doi.org/10.1152/physrev.00022.2018

17. Wang S., Ren J. Role of autophagy and regulatory mechanisms in alcoholic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis. 2018; (1864): 2003–9. DOI: https://www.doi.org/10.1016/j.bbadis.2018.03.016

18. Maiuolo J., Maretta A., Gliozzi M., et al. Ethanol-induced cardiomyocyte toxicity implicit autophagy and NFkB transcription factor. Pharm. Res. 2018; (133): 141–50. DOI: https://www.doi.org/10.1016/j.phrs.2018.04.004

19. Kuroda A., Hegab A.E., Jingtao G., et al. Effects of the common polymorphism in the human aldehyde dehydrogenase 2 (ALDH2) gene on the lung. Respir Res. 2017; 18 (1): 69. DOI: https://www.doi.org/10.1186/s12931-017-0554-5

20. Fernández-Sola J., Toll-Argudo M., Tobías-Baraja E., et al. Decreased Myocardial Titin Expression in Chronic Alcoholic Cardiomyopathy. J Cardiovasc Dis Med. 2018; (1): 63–70. DOI: https://www.doi.org/10.1134/S0006297917020080

21. Li X., Nie Y., Lian H., Hu S. Histopathologic features of alcoholic cardiomyopathy compared with idiopathic dilated cardiomyopathy. Go Med (Baltimore). 2018; (97): e12259. DOI: https://www.doi.org/10.1097/MD.0000000000012259

22. Vaideeswar P., Chaudhari C., Rane S., et al. Cardiac pathology in chronic alcoholics: A preliminary study. J Postgrad Med. 2014; (60): 372–6. DOI: https://www.doi.org/10.4103/0022-3859.143958

23. Lluís M., Fernández-Solà J., Castellví-Bel S., et al. Evaluation of myocyte proliferation in alcoholic cardiomyopathy: Telomerase enzyme activity (TERT) compared with Ki-67 expression. Alcohol Alcohol. 2011; (46): 534–41. DOI: https://www.doi.org/10.1093/alcalc/agr071

24. González-Reimers E., Santolaria-Fernández F., Martín-González M.C., et al. Alcoholism: A systemic proinflammatory condition. World J Gastroenterol. 2014; (20): 14660–71. DOI: https://www.doi.org/10.3748/wjg.v20.i40.14660

25. Mirijello A., Sestito L., Lauria C., et al. Echocardiographic markers of early alcoholic cardiomyopathy: Six-month longitudinal study in heavy drinking patients. Eur J Intern Med. 2022; (101): 76–85. DOI: https://www.doi.org/10.1016/j.ejim.2022.04.005

26. Ram P., Lo K.B., Shah M., et al. National trends in hospitalizations and outcomes in patients with alcoholic cardiomyopathy. Clin Cardiol. 2018; (41): 1423–9. DOI: https://www.doi.org/10.1002/clc.23067

27. Shaaban A., Gangwani M.K., Pendela V.S., Vindhyal M.R. Alcoholic Cardiomyopathy. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

28. Amor-Salamanca A., Guzzo-Merello G., González-López E., et al. Prognostic Impact and Predictors of Ejection Fraction Recovery in Patients With Alcoholic Cardiomyopathy. Rev Esp Cardiol. 2018; 71 (8): 612–9. DOI: https://www.doi.org/10.1016/j.rec.2017.11.032

29. Thomes P.G., Rasineni K., Saraswathi V., et al. Natural Recovery by the Liver and Other Organs after Chronic Alcohol Use. Alcohol Res. 2021; 41 (1): 5. DOI: https://www.doi.org/10.35946/arcr.v41.1.05

30. Dvorak R.D., Troop-Gordon W., Stevenson B.L., et al. A randomized control trial of a deviance regulation theory intervention to increase alcohol protective strategies. J Consult Clin Psychol. 2018; 86 (12): 1061–75. DOI: https://www.doi.org/10.1037/ccp0000347

31. Hietanen S., Herajärvi J., Junttila J., et al. Characteristics of subjects with alcoholic cardiomyopathy and sudden cardiac death. Heart. 2020; 106 (9): 686–90. DOI: https://www.doi.org/10.1136/heartjnl-2019-315534

32. Dundung A., Kumar A., Guria R.T., et al. Clinical profile and prognostic factors of alcoholic cardiomyopathy in tribal and non-tribal population. Open Heart. 2020; 7 (2): e001335. DOI: https://www.doi.org/10.1136/openhrt-2020-001335

33. Huynh K. Risk factors. Reducing alcohol intake improves heart health. Nat Rev Cardiol. 2014; 11: 495. DOI: https://www.doi.org/10.1038/nrcardio.2014.106

34. Ronksley P.E., Brien S.E., Turner B.J., et al. Association of alcohol consumption with selected cardiovascular dis ease outcomes: A systematic review and meta-analysis. BMJ. 2011; 342: d671. DOI: https://www.doi.org/10.1136/bmj.d671

35. Rehm J., Hasan O.S.M, Imtiaz S., Neufeld M. Quantifying the contribution of alcohol to cardiomyopathy: A systematic review. Alcohol. 2017; (61): 9–15. DOI: https://www.doi.org/10.1016/j.alcohol.2017.01.011

36. Muckle W., Muckle J., Welch V., Tugwell P. Managed alcohol as a harm reduction intervention for alcohol addiction in populations at high risk for substance abuse. Cochrane Database Syst Rev. 2012; (12): CD 006747. DOI: https://www.doi.org/10.1002/14651858.CD006747

37. Nicolás J.M., Fernández-Solà J., Estruch R., et al. The effect of controlled drinking in alcoholic cardi omyopathy. Ann Intern Med. 2002; (136): 192–200. DOI: https://www.doi.org/10.7326/0003-4819-136-3-200202050-00007

38. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2022; 24 (1): 4–131. DOI: https://www.doi.org/10.1002/ejhf.2333

39. Khair S., Brenner L.A., Koval M., et al. New insights into the mechanism of alcohol-mediated organ damage via its impact on immunity, metabolism, and repair pathways: A summary of the 2021 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol. 2022; (103): 1–7. DOI: https://www.doi.org/10.1016/j.alcohol.2022.05.004

40. Day E., Rudd J.H.F. Alcohol use disorders and the heart. Addiction. 2019; 114 (9): 1670–8. DOI: https://www.doi.org/10.1111/add.14703

41. Fernández-Solà J., Planavila Porta A. New Treatment Strategies for Alcohol-Induced Heart Damage. Int J Mol Sci. 2016; (17): 1651. DOI: https://www.doi.org/10.3390/ijms17101651

42. Peng H., Shindo K., Donahue R.R., Abdel-Latif A. Cardiac Cell Therapy: Insights into the Mechanisms of Tissue Repair. Int J Mol Sci. 2021; 22 (3): 1201. DOI: https://www.doi.org/10.3390/ijms22031201

43. Ritterhoff J., Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol. 2023; 20 (12): 812–29. DOI: https://www.doi.org/10.1038/s41569-023-00887-x

44. Stempien-Otero A., Kim D.H., Davis J. Molecular networks underlying myofibroblast fate and fibrosis. J Mol Cell Cardiol. 2016; (97): 153–61. DOI: https://www.doi.org/10.1016/j.yjmcc.2016.05.002

45. Bloomekatz J., Galvez-Santisteban M., Chi N.C. Myocardial plasticity: Cardiac development, regeneration and disease. Curr Opin Genet Dev. 2016; (4): 20–130. DOI: https://www.doi.org/10.1016/j.gde.2016.05.029

46. Planavila A., Fernández-Solà J., Villarroya F. Cardiokines as Modulators of Stress-Induced Cardiac Disorders. Adv Protein Chem Struct Biol. 2017; (108): 227–56. DOI: https://www.doi.org/10.1016/bs.apcsb.2017.01.002

47. Gupta S., Sharma A.S.A., Verma R.S. Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery. Stem Cell Rev Rep. 2021; 17 (5): 1666–94. DOI: https://www.doi.org/10.1007/s12015-021-10168-0

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Andrey G. Obrezan
MD, Professor, Head of the Hospital Therapy Department of the Saint Petersburg State University, Chief Physician of SOGAZ MEDICINE Clinical Group, St. Petersburg, Russian Federation

Journals of «GEOTAR-Media»