References
1. Sobolev M., Slovut D.P., Lee Chang A., Shiloh A.L., Eisen L.A. Ultrasound-Guided Catheterization of the Femoral Artery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. The Journal of invasive cardiology. 2015; 27 (7): 318–23.
2. Roh J.W., Kim Y., Lee O.H., Im E., Cho D.K., Choi D., Jeong M.H. The learning curve of the distal radial access for coronary intervention. Scientific reports. 2021; 11 (1): 13217. DOI: https://doi.org/10.1038/s41598-021-92742-7
3. Zhao W., Peng H., Li H., Yi Y., Ma Y. He Y., Zhang H., Li T. Effects of ultrasound-guided techniques for radial arterial catheterization: A meta-analysis of randomized controlled trials. The American journal of emergency medicine. 2021; 46: 1–9. DOI: https://doi.org/10.1016/j.ajem.2020.04.064
4. Brass P., Hellmich M., Kolodziej L., Schick G., Smith, A.F. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. The Cochrane database of systematic reviews. 2015; 1(1): CD 006962. DOI: https://doi.org/10.1002/14651858.CD 006962.pub2
5. Sobolev M., Shiloh A.L., Di Biase L., Slovut D.P. Ultrasound-guided cannulation of the femoral vein in electrophysiological procedures: a systematic review and meta-analysis. Europace. 2017; 19 (5): 850–5. DOI: https://doi.org/10.1093/europace/euw113
6. Corvino A., Catalano O., de Magistris G., Corvino F., Giurazza F., Raffaella N., Vallone G. Usefulness of doppler techniques in the diagnosis of peripheral iatrogenic pseudoaneurysms secondary to minimally invasive interventional and surgical procedures: imaging findings and diagnostic performance study. Journal of ultrasound. 2020; 23 (4): 563–73. DOI: https://doi.org/10.1007/s40477-020-00475-6
7. Raft J., Coinus L., Lamotte A.S., Slosse C., Clerc-Urmès I., Baumann C., Richebé P., Bouaziz H. Arterial Cannulation Simulation Training in Novice Ultrasound Users. Respiratory care. 2022; 6 (9): 1154–60. DOI: https://doi.org/10.4187/respcare.09675
8. Hou Q., Zhou B., He J., Chen X., Zuo Y. Complications and related risk factors of transradial access cannulation for hemodynamic monitoring in general surgery: a prospective observational study. BMC anesthesiology. 2023; 2 (1): 228. DOI: https://doi.org/10.1186/s12871-023-02168-z
9. Kim H., Nam Y.S., Kim Y.S. The ascending branch of the lateral circumflex femoral artery penetrating the posterior division of the femoral nerve. Anatomy & cell biology. 2021; 54 (1): 124–7. DOI: https://doi.org/10.5115/acb.20.237
10. Castle E.V., Rathod K.S., Guttmann O.P., Jenkins A.M., McCarthy C.D., Knight C.J., O’Mahony C., Mathur A., Smith E.J., Weerackody R., Timmis A.D., Wragg A., Jones D.A. Routine use of fluoroscopic guidance and up-front femoral angiography results in reduced femoral complications in patients undergoing coronary angiographic procedures: an observational study using an Interrupted Time-Series analysis. Heart and vessels. 2019; 34 (3): 419–26. DOI: https://doi.org/10.1007/s00380-018-1266-6
11. Yiannakopoulos C., Sachinis N., Oluku J., Dellis S. Intra-articular Hip Injection Using Anatomical and Radiological Landmarks Without the Use of Ultrasound or Radiological Guidance. Cureus. 2022; 14 (3): e23581. DOI: https://doi.org/10.7759/cureus.23581
12. El-Mawardy M., Schwarz B., Landt M., Sulimov D., Kebernik J., Allali A., Becker B., Toelg R., Richardt G., Abdel-Wahab M. Impact of femoral artery puncture using digital subtraction angiography and road mapping on vascular and bleeding complications after transfemoral transcatheter aortic valve implantation. Euro Intervention. 2017; 12 (13): 1667–73. DOI: https://doi.org/10.4244/EIJ-D-15-00412
13. Pour-Ghaz I., Raja J., Bayoumi M., Manolukas T., Khouzam R.N., Ibebuogu U.N. Transcatheter aortic valve replacement with a focus on transcarotid: a review of the current literature. Annals of translational medicine. 2019; 7 (17): 420. DOI: https://doi.org/10.21037/atm.2019.07.11
14. Agarkov M.V., Kozlov K.L., Duke O.B. Combined visualization in endovascular treatment of pathology of the arteries of the lower extremities. Angiology and vascular surgery. 2023; 29 (1): 89–108. DOI: https://doi.org/10.33029/1027-6661-2023-29-1-89-98
15. Chun E.J. Ultrasonographic evaluation of complications related to transfemoral arterial procedures. Ultrasonography. 2018; 37 (2): 164–73. DOI: https://doi.org/10.14366/usg.17047
16. Vetrovec G.W., Kaki A., Wollmuth J., Dahle T.G. Strategies for Reducing Vascular and Bleeding Risk for Percutaneous Left Ventricular Assist Device-supported High-risk Percutaneous Coronary Intervention. Heart international. 2022; 16 (2): 105–11. DOI: https://doi.org/10.17925/HI.2022.16.2.105
17. Rana N., Vijayvergiya R., Kasinadhuni G., Khanal S., Panda P. Comparison of radial versus femoral access using hemostatic devices following percutaneous coronary intervention. Indian heart journal. 2021; 73 (3): 382–4. DOI: https://doi.org/10.1016/j.ihj.2021.04.006
18. van Wiechen M.P., Ligthart J.M., Van Mieghem N.M. Large-bore Vascular Closure: New Devices and Techniques. Interventional cardiology. 2019; 14 (1): 17–21. DOI: https://doi.org/10.15420/icr.2018.36.1
19. Stone P., Campbell J., Thompson S., Walker J. A prospective, randomized study comparing ultrasound versus fluoroscopic guided femoral arterial access in noncardiac vascular patients. Journal of vascular surgery. 2020; 72 (1): 259–67. DO: https://doi.org/10.1016/j.jvs.2019.09.051