To the content
3 . 2022

New risk factors for acute myocardial infarction in young men

Abstract

In recent years, there has been a tendency to increase the number of acute myocardial infarctions (AMI) in young people. The study of predictors of AMI is an important direction in modern cardiology, which makes it possible to optimize both primary and secondary prevention of cardiovascular complications.

In addition to the well-studied traditional modifiable risk factors of AMI (hypertension, obesity, smoking, alcohol, dyslipidemia, diabetes mellitus, gender, age, heredity), pathology of the hemostasis system plays an important role in young people.

In our work we reviewed both known and new vascular-platelet, coagulation hemostasis and fibrinolysis system parameters, the imbalance of which leads to acute coronary events.

Such factors as tissue factor/tissue factor pathway inhibitor, thrombin, and coagulation factor FXIII activity make a significant contribution to arterial thrombosis development, but despite of this, they are not currently evaluated in clinical practice and are not used for stratification of high-risk cardiovascular complications groups.

The study of the hemostasis system allows us to gain new knowledge about the mechanisms of AMI development in the absence of traditional risk factors, to identify prognostically significant biological markers that allow predicting the risk of coronary events in young patients.

Keywords:acute myocardial infarction; arterial thrombosis; tissue factor; tissue factor inhibitor; thrombin; FXIII coagulation factor; fibrinolysis

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Gorbacheva N.S., Veselovskaya N.G., Nikolaeva M.G., Chumakova G.A., Momot A.P., Rudakova D.M. New risk factors for acute myocardial infarction in young men. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2022; 10 (3): 42–49. DOI: https://doi.org/10.33029/2309-1908-2022-10-3-42-49 (in Russian)

References

1. Global health risks: mortality and burden of disease attributable to selected major risks. Risk factors. World health. Epidemiology. Risk assessment. Mortality – trends. Morbidity – trends. Data analysis, Statistical. I. World Health Organization. ISBN 978-92-4-456387-8 (NLM classification: WA 105)

2. Federal State Statistics Service. E-mail: stat@gks.ru (in Russian)

3. World and Russian statistics of myocardial infarctions. URL: www.secret-dolgolet.ru/statistika-infarktov March 1, 2019. (in Russian)

4. Son I.M., Alexandrova G.A., Khakhalina E.V. Medical and demographic indicators of the Russian Federation in 2012. Moscow: Ministry of Health of Russia, 2013. 180 p. (in Russian)

5. Gulati R., Behfar A., Narula J., Kanwar A. et al. Acute Myocardial Infarction in Young Individuals. Mayo Clin Proc. 2020; 95 (1): 136–56.

6. Pedersen L.R., Frestad D., Michelsen M.M., Mygind N.D., et al. Risk factors for myocardial infarction in women and men: a review of the current literature. Affiliations expand MID: 26956230 DOI: https://www.doi.org/10.2174/1381612822666160309115318

7. Pasek J., Manierak-Pasek A., Łebek J., Kawecki D., et al Młodzi pacjenci z zawałem mieśnia sercowego – czy moina coś zrobić? [Young patients after myocardial infarction – what could be done?]. Wiad Lek. 2010; 63 (3): 188–94.

8. Kotseva K., Wood D., De Bacquer D., De Backer G. et al. EUROASPIRE IV: A European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur J Prev Cardiol. 2016; 23 (6): 636–48.

9. Oganov R.G., Maslennikova G.Ya., Koltunov I.E., Kalinina A.M. Conditions necessary for effective prevention of cardiovascular and other non-communicable disease in the Russian Federation. Cardiovascular Therapy and Prevention. 2010; 9 (6): 4–9.

10. Lee J.C., Zdrojewski T., Pencina M.J., Wyszomirski A. et al. Population Effect of differences in Cholestero Guidelines in Eastern Europe and the United States. Affiliations expand. JAMA Cardiol. 2016: 1 (6): 700–7.

11. Lippi G., Favaloro E.J. Venous and arterial thromboses: two sides of the same coin? Semin Thromb Hemost. 2018; 44 (3): 239–48.

12. Herrington W., Lacey B., Sherliker P., Armitage J., Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016; 118: 535–46. DOI: https://www.doi.org/10.1161/CIRCRESAHA.115.307611

13. Navarro S., Stegner D., Nieswandt B., Heemskerk J.W.M., et al. Navarro S. Temporal roles of platelet and coagulation pathways in collagen- and tissue factor-induced thrombus formation. Int J Mol Sci. 2021; 23 (1): 358.

14. Alkarithi G., Duval C., Shi Y., Macrae F.L., et al. Thrombus structural composition in cardiovascular disease. Arterioscler Thromb Vasc Biol. 2021; 41 (9): 2370–83.

15. Sadowski M., Ząbczyk M., Undas A. Coronary thrombus composition: links with inflammation, platelet and endothelial markers. Atherosclerosis. 2014; 237 (2): 555–61.

16. Pircher J., Czermak T., Ehrlich A., Eberle C., Gaitzsch E., Margraf A., Grommes J., Saha P., Titova A., Ishikawa-Ankerhold H., et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018; 9 (1): 1523. DOI: https://www.doi.org/10.1038/s41467-018-03925-2

17. Pieters M., Philippou H., Undas A., de Lange Z., et al. Subcommittee on Factor XIII and Fibrinogen, and the subcommittee on fibrinolysis an international study on the feasibility of a standardized combined plasma clot turbidity and lysis assay: communication from the SSC of the ISTH. J Thromb Haemost. 2018; 16: 1007–12.

18. Ząbczyk M., Natorska J., Undas A. Fibrin clot properties in atherosclerotic vascular disease: from pathophysiology to clinical outcomes. J Clin Med. 2021; 10 (13): 2999.

19. Undas A., Szułdrzynski K., Stepien E., Zalewski J., et al. Reduced clot permeability and susceptibility to lysis in patients with acute coronary syndrome: Effects of inflammation and oxidative stress. Atherosclerosis. 2008; 196: 551–7.

20. Sumaya W., Wallentin L., James S.K., Siegbahn A. et al. Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: A PLATO substudy. Eur Heart J. 2018; 39: 1078–85.

21. Borissoff J.I., Spronk H.M., Heeneman S., ten Cate H. Is thrombin a key player in the ‘coagulation-atherogenesis’ maze? Cardiovasc Res. 2009; 82: 392–403.

22. Grover S.P., Mackman N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis. 2020; 307: 80–6.

23. Smid M., Dielis A.W.J.H, Spronk H.M.H, Rumley A., et al. Thrombin generation in the Glasgow Myocardial Infarction Study. 2013; 8 (6): e66977. DOI: https://www.doi.org/10.1371/journal.pone.0066977

24. Zelaya H., Rothmeier A.S., Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost. 2018; 16 (10): 1941–52.

25. Grover S.P., Mackman N. Tissue factor: An essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol. 2018; 38: 709–25.

26. Xiong S.L., Wang Q., Zheng L., Li J.L., et al. Value of plasma tissue factor, tissue factor pathway inhibitor and factor VII assessments in patients with acute myocardial and cerebral infarction. Nan Fang Yi Ke Da Xue Xue Bao. 2007; 27 (12): 1821–3.

27. Shalia K.K., Shah V.K., Mashru M.R., Soneji S.L., et al. Circulating thrombotic and haemostatic components in patients with coronary artery disease. Indian J Clin Biochem. 2010; 25 (1): 20–8.

28. Lim X.C., Yatim S., Chong S.Y., Wang X., et al. P4639 Plasma tissue factor coagulation activity in post-acute myocardial infarction patients. European Heart Journal. 2019; 40: ehz745.1021. DOI: https://www.doi.org/10.1093/eurheartj/ehz745.1021

29. Maroney S.A., Mast A.E. Expression of tissue factor pathway inhibitor by endothelial cells and platelets. Transfus Apher Sci. 2008; 38 (1): 9–14. DOI: https://www.doi.org/10.1016/j.transci.2007.12.001

30. Golino P., Ravera A., Ragni M. et al. Involvement of tissue factor pathway inhibitor in the coronary circulation of patients with acute coronary syndromes. Circulation. 2003: 2864–9.

31. Novotny W.F., Girard T.J., Miletich J.P., Broze G.J., Jr. Platelets secrete a coagulation inhibitor functionally and antigenically similar to the lipoprotein associated coagulation inhibitor. Blood. 1988; 72: 2020–5.

32. Winckers K., Siegerink B., Duckers C., Maurissen L.F., et al. Increased tissue factor pathway inhibitor activity is associated with myocardial infarction in young women: results from the RATIO study. J Thromb Haemost. 2011; 9 (11): 2243–50.

33. Saigo M., Abe S., Ogawa M., Yamashita T., et al. Imbalance of plasminogen activator inhibitor-I/tissue plasminogen activator and tissue factor/tissue factor pathway inhibitor in young Japanese men with myocardial infarction. Thromb Haemost. 2001; 86 (5): 1197–203.

34. van Paridon P.C.S., Panova-Noeva M., van Oerle R., Schulz A., Prochaska J.H., et al. Relation between tissue factor pathway inhibitor activity and cardiovascular risk factors and diseases in a large population sample. Thromb Haemost. 2021; 121 (2): 174–81.

35. Boinska J., Koziński M., Kasprzak M., Ziołkowska K., et al. Diurnal variations in tissue factor and tissue factor pathway inhibitor concentrations in relation to on-treatment platelet reactivity: an analysis of patients with acute myocardial infarction. Platelets. 2020; 31 (7): 877–83.

36. Smid M., Dielis A.W., Spronk H.M., Rumley A., et al. Thrombin generation in the Glasgow Myocardial Infarction Study. PLoS One. 2013; 8 (6): e66977. DOI: https://www.doi.org/10.1371/journal.pone.0066977

37. Merlini P.A., Ardissino D., Oltrona L., Broccolino M., et al. Heightened thrombin formation but normal plasma levels of activated factor VII in patients with acute coronary syndromes. Arterioscler Thromb Vasc Biol. 1995; 15: 1675–9.

38. Gerotziafas G.T., Zografos T., Pantos I., et al. Prospective assessment of biomarkers of hypercoagulability for the identification of patients with severe coronary artery disease. The ROADMAP-CAD Study. Clin Appl Thromb Hemost. 2020; 26: 1076029620964590. DOI: https://www.doi.org/10.1177/1076029620964590

39. Borissoff J.I., Spronk H.M., ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med. 2011; 364: 1746–60.

40. Hansen C.H., Ritschel V., Halvorsen S., Andersen G.Ø., et al. Markers of thrombin generation are associated with myocardial necrosis and left ventricular impairment in patients with ST-elevation myocardial infarction. Thromb J. 2015; 13: 31.

41. van Paridon P.C.S., Panova-Noeva M., van Oerle R., Schultz A., Hermanns I.M. et al. Thrombin generation in cardiovascular disease and mortality – results from the Gutenberg Health Study. Haematologica. 2020; 105 (9): 2327–34.

42. Holme P.A., Brosstad F., Solum N.O. The difference between platelet and plasma FXIII used to study the mechanism of platelet microvesicle formation. Thromb Haemost. 1993; 70: 681–6.

43. Töröcsik D., Szeles L., Paragh G., Rákosy Z., et al. Factor XIII-A is involved in the regulation of gene expression in alternatively activated human macrophages. Thromb Haemost. 2010; 104: 709–17.

44. Alshehri F.S.M., Whyte C.S., Mutch N.J. Factor XIII-A: An indispensable “Factor” in haemostasis and wound healing. Int J Mol Sci. 2021; 22 (6): 3055.

45. Dull K., Fazekas F., Törőcsik D. Factor XIII-A in Diseases: Role beyond blood coagulation. Int J Mol Sci. 2021; 22 (3): 1459.

46. Chen F., Qiao Q., Xu P., Fan B., Chen Z. Effect of factor XIII-A Val34Leu polymorphism on myocardial infarction risk: a meta-analysis. Clin Appl Thromb Hemost. 2014; 20: 783–92.

47. Wang G., Zou Z., Ji X., Ni Q., Ma Z. XIII-A Val34Leu polymorphism might be associated with myocardial infarction risk: an updated meta-analysis. Int J Clin Exp Med. 2014; 7: 5547–52.

48. El-Fattah A.A.A., Sadik N.A.H., Sedrak H., Battah A., et al. Association of genetic variants of hemostatic genes with myocardial infarction in Egyptian patients. Gene. 2018; 641: 212–9.

49. Mohammad A.M., Othman G.O., Saeed C.H., Al Allawi S., et al. Genetic polymorphisms in early-onset myocardial infarction in a sample of Iraqi patients: a pilot study. BMC Res Notes. 2020; 13 (1): 541.

50. Mezei Z.A., Katona É., Kállai J., Bereczky Z. et al. Regulation of plasma factor XIII levels in healthy individuals; a major impact by subunit B intron K c.1952+144 C>G polymorphism. Thromb Res. 2016; 148: 101–6.

51. Balogh L., Katona É., Mezei Z.A., Kállai J., Mezei Z.A., Katona É., Kállai J., Bereczky Z. et al. Effect of factor XIII levels and polymorphisms on the risk of myocardial infarction in young patients. Mol Cell Biochem. 2018; 448 (1-2): 199–209.

52. Ambroziak M., Kuryłowicz A., Budaj A. Increased coagulation factor XIII activity but not genetic variants of coagulation factors is associated with myocardial infarction in young patients. J Thromb Thrombolysis. 2019; 48 (3): 519–27.

53. Naito M., Nomura H., Iguchi A., Thompson W.D., Smith E.B. Effect of crosslinking by factor XIIIa on the migration of vascular smooth muscle cells into fibrin gels. Thromb Res. 1998; 90: 111–6.

54. Ansani L., Marchesini J., Pestelli G., et al. F13A1 Gene Variant (V34L) and Residual Circulating FXIIIA Levels Predict Short- and Long-Term Mortality in Acute Myocardial Infarction after Coronary Angioplasty. Int J Mol Sci. 2018; 19 (9): 2766.

55. Gemmati D., Zeri G., Orioli E., Mari R., et al. Factor XIII-A dynamics in acute myocardial infarction: a novel prognostic biomarker? Thromb Haemost. 2015; 114 (1):123–32.

56. Frey A., Gassenmaier T., Hofmann U., Schmitt D., Fette G., et al. Coagulation factor XIII activity predicts left ventricular remodelling after acute myocardial infarction. ESC Heart Fail. 2020; 7 (5): 2354–64.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Andrey G. Obrezan
MD, Professor, Head of the Hospital Therapy Department of the Saint Petersburg State University, Chief Physician of SOGAZ MEDICINE Clinical Group, St. Petersburg, Russian Federation

Journals of «GEOTAR-Media»