To the content
1-2 . 2020

Modern diagnostic methods in nuclear cardiology

Abstract

Cardiovascular diseases present main cause of deaths in the developed and developing countries. That is why early diagnostics problems in cardiology are the subject for multiple scientific researches and discussions. Last years nuclear medicine methods play an essential role. Single positron emission computed tomography and positron emission tomography are the most noticeable among others. The core essence of the nuclear medicine methods contain registration of the radiation, emitting by specific radio pharm-substance, introduced into the men's body (in vivo diagnostic approach). Gamma-radiation is taken by the gamma-chamber probes (such called scintigraphy). Dual-photon radiation from the positron emitting isotopes is registered by the positron tomographs. Multiple scientific researches are being performed with the purpose to find out the most optimal radio pharmaceutic medications as for diagnostic and as well as for treatment effectiveness prognosis.

Keywords:nuclear cardiology, computed tomography, single positron emission computed tomography, positron emission tomography

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

For citation: Vorontsova M.V., Obrezan A.G., Kulikov N.V. Modern diagnostic methods in nuclear cardiology. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2020; 8 (1-2): 48- 53. DOI: https://doi.org/10.24411/2309-1908-2020-11201 (in Russian)

REFERENCES

1. Lee W.W. Recent advances in nuclear cardiology. Nucl Med Mol Imaging. 2016; 50 (3): 196–206. DOI: https://doi.org/10.1007/s13139-016-0433-x

2. Rozanski A., Gransar H., Hayes S.W., Min J., Friedman J.D., Thomson L.E., et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol. 2013; 61: 1054–65. DOI: https://doi.org/10.1016/j.jacc.2012.11.056

3. Garcia E.V., Slomka P., Moody J.B., Germano G., Ficaro E.P. Quantitative clinical nuclear cardiology, part 1: established applications. J Nucl Cardiol. 2020; 27 (1): 189–201. DOI: https://doi.org/10.1007/s12350-019-01906-6

4. Denisova N.V. Imaging in diagnostic nuclear medicine. Technical Physics 2018; 63 (9): 1375–83.

5. Denisova N.V., Terekhov I.N. A study of myocardial perfusion SPECT imaging with reduced radiation dose using maximum likelihood and entropy-based maximum a posteriori approaches. Biomed Phys Eng Express. 2016; 2 (5): 055015.

6. Denisova N.V., Ansheles A.A. A study of false apical defects in myocardial perfusion imaging with SPECT/CT. Biomed Phys Eng Express. 2018; 4 (6): 065018.

7. Kachurina E.N., Kokov A.N., Kareeva A.I., Barbarash O.L. Coronary artery calcification prevalence among residents of Western Syiberia: ESSE-RF study. Kompleksnye problemy serdechno-sosudistykh zabolevaniy [Complex Problems of Cardiovascular Diseases]. 2018; 7 (4): 33–40. DOI: https://doi.org/10.17802/2306-1278-2018-7-4-33-40 (in Russian)

8. Ong K.L., McClelland R.L., Rye K.A., Cheung B.M., Post W.S., Vaidya D., et al. The relationship between insulin resistance and vascular calcification in coronary arteries, and the thoracic and abdominal aorta: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2014; 236 (2): 257–62. DOI: https://doi.org/10.1016/j.atherosclerosis.2014.07.015

9. Arai A.E. The cardiac magnetic resonance (CMR) approach to assessing myocardial viability. J Nucl Cardiol. 2011c; 18 (6): 1095–102. DOI: https://doi.org/10.1007/s12350-011-9441-5

10. Brodov Y., Gransar H., Dey D., Shalev A., Germano G., Friedman J.D., et al. Combined quantitative assessment of myocardial perfusion and coronary artery calcium score by hybrid 82Rb PET/CT improves detection of coronary artery disease. J Nucl Med. 2015; 56: 1345–50. DOI: https://doi.org/10.2967/jnumed.114.153429

11. Liga R., Vontobel J., Rovai D., Marinelli M., Caselli C., Pietila M., et al. Multicentre multi-device hybrid imaging study of coronary artery disease: results from the EValuation of INtegrated Cardiac Imaging for the Detection and Characterization of Ischaemic Heart Disease (EVINCI) hybrid imaging population. Eur Heart J Cardiovasc Imaging. 2016; 17 (9): 951–60. DOI: https://doi.org/10.1093/ehjci/jew038

12. Bulluck H., White S.K., Frohlich G.M., Casson S.G., O’Meara C., Newton A., et al. Quantifying the area at risk in reperfused ST-segment-elevation myocardial infarction patients using hybrid cardiac positron emission tomography-magnetic resonance imaging. Circ Cardiovasc Imaging. 2016; 9: e003900. DOI: https://doi.org/10.1161/CIRCIMAGING.115.003900

13. Rischpler C., Dirschinger R.J., Nekolla S.G., Kossmann H., Nicolosi S., Hanus F., et al. Prospective evaluation of 18F-Fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ Cardiovasc Imaging. 2016; 9: e004316. DOI: https://doi.org/10.1161/CIRCIMAGING.115.004316

14. Einstein A.J., Knuuti J. Cardiac imaging: does radiation matter? Eur Heart J. 2012; 33 (5): 573–8. DOI: https://doi.org/10.1093/eurheartj/ehr281

15. Mahesh M., Morin R.L. Radiation exposure and patient dose in cardiology. J Am Coll Radiol. 2017; 14 (12): 1581–2. DOI: https://doi.org/10.1016/j.jacr.2017.09.003

16. Hirshfeld J.W. Jr, Ferrari V.A., Bengel F.M., Bergersen L., Chambers C.E., Einstein A.J., et al. 2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging: best practices for safety and effectiveness. J Am Coll Cardiol. 2018; 71 (24): e283–351. DOI: https://doi.org/10.1016/j.jacc.2018.02.018

17. DePuey E.G. Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Cardiol. 2012; 19: 551–81. DOI: https://doi.org/10.1007/s12350-012-9544-7

18. Ritt P., Vija H., Hornegger J., Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging. 2011; 38 (suppl 1): S69–77. DOI: https://doi.org/10.1007/s00259-011-1770-8

19. DePuey E.G., Ata P., Wray R., Friedman M. Very low-activity stress/high-activity rest, single-day myocardial perfusion SPECT with a conventional sodium iodide camera and wide beam reconstruction processing. J Nucl Cardiol. 2012; 19: 931–44. DOI:https://doi.org/10.1007/s12350-012-9596-8

20. Lee H., Lee W.W., Park S.Y., Kim S.E. F-18 sodium fluoride positron emission tomography/computed tomography for detection of thyroid cancer bone metastasis compared with bone scintigraphy. Korean J Radiol. 2016; 17: 281–8. DOI: https://doi.org/10.3348/kjr.2016.17.2.281

21. Maiga A.W., Deppen S.A., Mercaldo S.F., et al. Assessment of fluorodeoxyglucose F18-labeled positron emission tomography for diagnosis of high-risk lung nodules. JAMA Surg. 2018; 153 (4): 329–34. DOI: https://doi.org/10.1001/jamasurg.2017.4495

22. Aoyama R., Takano H., Kobayashi Y., et al. Evaluation of myocardial glucose metabolism in hypertrophic cardiomyopathy using 18F-fluorodeoxyglucose positron emission tomography. PLoS One. 2017; 12 (11): e0188479. DOI: https://doi.org/10.1371/journal.pone.0188479

23. Lee W.W., Marinelli B., van der Laan A.M., Sena B.F., Gorbatov R., Leuschner F., et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012; 59: 153–63. DOI: https://doi.org/10.1016/j.jacc.2011.08.066

24. Kaufmann P.A. Cardiac PET/MR: big footprint-small step? J Nucl Cardiol. 2015; 22: 225–6. DOI:https://doi.org/10.1007/s12350-015-0089-4

25. Lee S.J., Lee W.W., Kim S.E. Bone positron emission tomography with or without CT is more accurate than bone scan for detection of bone metastasis. Korean J Radiol. 2013; 14: 510–9. DOI: https://doi.org/10.3348/kjr.2013.14.3.510

26. Lee H., Lee K.S., Lee W.W. 18F-NaF PET/CT findings in fibrous dysplasia. Clin Nucl Med. 2015; 40: 912–4. DOI: https://doi.org/10.1097/RLU.0000000000000948

27. Irkle A., Vesey A.T., Lewis D.Y., Skepper J.N., Bird J.L., Dweck M.R., et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun. 2015; 6: 8495. DOI: https://doi.org/10.1038/ncomms8495

28. Fiz F., Morbelli S., Piccardo A., Bauckneht M., Ferrarazzo G., Pestarino E., et al. 18F-NaF uptake by atherosclerotic plaque on PET/CT imaging: inverse correlation between calcification density and mineral metabolic activity. J Nucl Med. 2015; 56: 1019–23. DOI: https://doi.org/10.2967/jnumed.115.154229

29. Joshi N.V., Vesey A.T., Williams M.C., Shah A.S., Calvert P.A., Craighead F.H., et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014; 383: 705–13. DOI: https://doi.org/10.1016/S0140-6736(13)61754-7

30. Seward J.B., Casaclang-Verzosa G. Infiltrative cardiovascular diseases: cardiomyopathies that look alike. J Am Coll Cardiol. 2010; 55 (17): 1769–79. DOI: https://doi.org/10.1016/j.jacc.2009.12.040

31. Bois J.P., Chareonthaitawee P. Optimizing radionuclide imaging in the assessment of cardiac sarcoidosis. J Nucl Cardiol. 2016; 23: 253–5. DOI: https://doi.org/10.1007/s12350-015-0252-y

32. Youssef G., Leung E., Mylonas I., Nery P., Williams K., Wisenberg G., et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012; 53: 241–8. DOI: https://doi.org/10.2967/jnumed.111.090662

33. Bokhari S., Castano A., Pozniakoff T., Deslisle S., Latif F., Maurer M.S. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013; 6: 195–201. DOI: https://doi.org/10.1161/CIRCIMAGING.112.000132

34. Van Der Gucht A., Galat A., Rosso J., Guellich A., Garot J., Bodez D., et al. [18F]-NaF PET/CT imaging in cardiac amyloidosis. J Nucl Cardiol. 2016; 23 (4): 846–9. DOI: https://doi.org/10.1007/s12350-015-0287-0

35. Lee S.P., Lee E.S., Choi H., Im H.J., Koh Y., Lee M.H., et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015; 8: 50–9. DOI: https://doi.org/10.1016/j.jcmg.2014.09.018

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Andrey G. Obrezan
MD, Professor, Head of the Hospital Therapy Department of the Saint Petersburg State University, Chief Physician of SOGAZ MEDICINE Clinical Group, St. Petersburg, Russian Federation

Journals of «GEOTAR-Media»