To the content
1 . 2023

Irrational nutrition and chronic stress – are the key causes of cardiovascular diseases and premature aging of a person?

Abstract

Modern science and medicine are developing at an incredible pace, each time setting themselves more and more complex tasks. One of these today is the diagnosis of premature aging processes and their timely prevention. Based on the results of personal scientific and practical activities, P. Nilssen et al., in 2008 determined the syndrome of early vascular aging (EVA syndrome) existence. Numerous studies of colleagues around the world later only confirmed the fact that a certain cohort of people has accelerated rates of the cardiovascular system’s aging. Approaches to the diagnosis of EVA syndrome were proposed and tested, criteria and correlations with various risk factors were determined. It was also noted that some people, on the contrary, have a slow rate of vascular aging (SUPERNOVA), which apparently has a significant protective effect on the development of cardiovascular diseases. Epigenetic risk factors leading to accelerated aging of the cardiovascular system continue to be studied. Having reliable knowledge about the influence of certain cardiovascular risk factors on the rate of vascular aging, targeted prevention of the processes of premature aging of the population becomes potentially possible. This can radically change the approaches to primary prevention of cardiovascular diseases and significantly increase the average life expectancy.

Keywords:early vascular aging; cardiovascular risk factors

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Obrezan A.A., Ponomarenko G.N., Kantemirova R.K., Obrezan A.G., Filippov A.E., Tuktarov A.M., Serezhina E.K., Danilenko A.V. Irrational nutrition and chronic stress – are the key causes of cardiovascular diseases and premature aging of a person?. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2023; 11 (1): 8–18. DOI: https://doi.org/10.33029/2309-1908-2023-11-1-8-18 (in Russian)

References

  1. Noncommunicable Diseases: Mortality. 2019. URL: https:// www.who.int/gho/ncd/mortality_morbidity/en/
  2. Noncommunicable Diseases: Key Facts. 2018. URL: https:// www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
  3. Dzau V., Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J. 1991; 121 (4 pt 1): 1244–63.
  4. Podzolkov V.I., Osadchik K.K. Cardiovascular continuum: can ACE inhibitors break the «vicious circle»? RMZh [Russian Medical Journal]. 2008; (17): 1102–09. (in Russian)
  5. Tsygankova O.V., Khudyakova A.D., Latyntseva L.D., Lozhkina N.G. Cаrdiovascular continuum: from risk factors to the systolic heart failure. The clinical case. Ateroskleroz [Atherosclerosis]. 2017; 13 (4): 42–6. DOI: https://doi.org/10.15372/ATER 20170407 (in Russian)
  6. Muratov A.A., Koshukeyeva M.K., Aytbaev K.A., Maynazarova E.S., Alymkulova A.J., Isakova J.T. Cardiovascular risk factors in children with hereditary loading. Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular Therapy and Prevention]. 2020; 19 (1): 56–61. DOI: https://doi.org/10.15829/1728-8800-2020-1-2377 (in Russian)
  7. Visseren F.L.J., Mach F., Smulders Y.M., et al.; ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42 (34): 3227–37. DOI: https://doi.org/10.1093/eurheartj/ehab484
  8. Liu Z., Kuo P-L., Horvath S., et al. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. Basu S., ed. PLoS Med. 2018; 15 (12): e1002718. DOI: https://doi.org/10.1371/journal.pmed.1002718
  9. Akopyan A.A., Strazhesko I.D., Klyashtorny V.G., Orlova I.A. Biological vascular age and its relationship with cardiovascular risk factors. Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular Therapy and Prevention]. 2022; 21 (1): 12–19. DOI: https://doi.org/10.15829/1728-8800-2022-2877 (in Russian)
  10. Zinov’ev P.A., Shubina I.Z., Yamenskov V.V., Kiselevsky M.V. Chronic inflammation in the elderly: mechanisms and association with atherosclerosis. Rossiyskiy bioterapevticheskiy zhurnal [Russian biotherapeutic journal]. 2021; 20 (2): 10–8. DOI: https://doi.org/10.17650/1726-9784-2021-20-2-10-18 (in Russian)
  11. Pristrom M.S., Pristrom S.L., Semenenkov I.I. Physiological and early aging. Modern view of the problem. Mezhdunarodnye obzory: klinicheskaya praktika i zdorov’e [International Reviews: Clinical Practice and Health]. 2017; (5–6: 40–64. (in Russian)
  12. Kulaberoglu Y., Malik Y., Borland G., Selman C., Alic N., Tullet J.M.A. RNA polymerase III, ageing and longevity. Front Genet. 2021; 12: e705122.
  13. Hardeland R. Aging, melatonin, and the pro- and anti-inflammatory networks. Int J Mol Sci. 2019; 20 (5): 1223.
  14. Kontsevaya A.V., Shal’nova S.A., Drapkina O.M. ESSERF study: epidemiology and public health promotion. Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular Therapy and Prevention]. 2021; 20 (5): 224–232. DOI: https://doi.org/10.15829/1728-8800-2021-2987 (in Russian)
  15. Baranovsky A. Yu. Dietology: Manual. 5th ed. Saint Petersburg: Piter, 2018: 1104 p. (in Russian)
  16. Baigarin E.K. Study of the content of dietary fibers in domestic food products and their effect on the digestibility of macronutrients. Autoabstract of Diss. Moscow, 2012. 22 p. (in Russian)
  17. Cardiovascular prevention 2022. Russian national recommendations. In: S.A. Boytsov, N.V. Pogosova. Moscow, 2022: 357 p. (in Russian)
  18. Taylor A.M., Holscher H.D. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr Neurosci. 2020; 23: 237–50. DOI: https://doi.org/10.1080/102 8415x.2018.1493808
  19. Roager H.M., Licht T.R., Poulsen S.K., Larsen T.M., Bahla M.I. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new Nordic diet. Appl Environ Microbiol. 2014; 80 (3): 1142–9. DOI: https://doi.org/10.1128/AEM.03549-13
  20. Arumugam M., Raes J., Pelletier E., et al. Enterotypes of the human gut microbiome. Nature. 2011; 473 (7346): 174–80. DOI: https://doi.org/10.1038/nature09944
  21. Kuznetsova E.E., Gorokhova V.G., Bogorodskaya S.L. The microbiota of intestine. The role in development of various pathologies. Klinicheskaya laboratornaya diagnostika [Clinical Laboratory Diagnostics]. 2016; 61 (10): 723–6. DOI: https://doi.org/10.18821/0869-2084-2016-61-10-723-726 (in Russian)
  22. Karlsson F.H., Fak F., Nookaew I., et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012; 3: 1245. DOI: https://doi.org/10.1038/ncomms2266
  23. Emoto T., Yamashita T., Sasaki N., et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb. 2016; 23 (8): 908–21. DOI: https://doi.org/10.5551/jat.32672
  24. Jie Z., Xia H., Zhong S.L., et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017; 8 (1): 845. DOI: https://doi.org/10.1038/s41467-017-00900-1
  25. Volkova R.A., Skolotneva E.S., El’bert E.V., Mytsa E.D., Davydov D.S., Movsesyants A.A., et al. Genotyping problems of microorganisms. BIOpreparaty. Profilaktika, diagnostika, lechenie [BIOpreparations. Prevention, Diagnosis, Treatment]. 2016; 16 (3): 139–44. (in Russian)
  26. Ley R.E., Tumbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444 (7122): 1022–3.
  27. Grigor’eva I.N. Gallstone disease, obesity and the firmicutes/bacteroidetes ratio as a possible biomarker of gut dysbiosis. J Pers Med. 2020; 11 (1): 13. DOI: https://doi.org/10.3390/jpm11010013
  28. Metagenomics of the Human Intestinal Tract. URL: http://www.metahit.eu/index.php?id=234 (date of access May 25, 2018).
  29. Fomina A.A., Konnova O.N., Tikhomirova E.I., Konnova S.A. The effect of azospirillumir4kense lipopolysaccharide KBC 1 on the induction of cytokine synthesis in vivo and in vitro by phagocytic macrophages. Fundamental’nye issledovaniya [Fundamental Researches]. 2006; (4): 55–6. (in Russian)
  30. Drapkina O.M., Zhamalov L.M. Gut microbiota: a new risk factor for atherosclerosis? Profilakticheskaya meditsina [Preventive Medicine]. 2022; 25 (11): 92–7. DOI: https://doi.org/10.17116/profmed20222511192 (in Russian)
  31. Wang J., Si Y., Wu C., et al. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR 4-NF-kappaB pathway. Lipids Health Dis. 2012; 11: 139. DOI: https://doi.org/10.1186/1476-511X-11-139
  32. Carnevale R., Nocella C., Petrozza V., et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci Rep. 2018; 8: 3598. DOI: https://doi.org/10.1038/s41598-018-22076-4
  33. Khan M., Gerasimidis K., Edwards C. Role of gut microbiota in the aetiology of obesity: Proposed mechanisms and review of the literature J Obes. 2016; 2016: 1–27. DOI: https://doi.org/10.1155/2016/7353642
  34. Neves A.L., Coelho J., Couto L., et al. Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol. 2013; 51 (2): 51–64. DOI: https://doi.org/10.1530/JME-13-0079
  35. Drapala A., Szudzik M., Chabowski D., et al. Heart failure disturbs gut-blood barrier and increases plasma trimethylamine, a toxic bacterial metabolite. Int J Mol Sci. 2020; 21 (17): 6161. DOI: https://doi.org/10.3390/ijms21176161
  36. Tang W.H.W., Hazen S.L. Microbiome, trimethylamine N-oxide (TMAO), and cardiometabolic disease. Transl Res. 2017; 179: 108–15. DOI: https://doi.org/10.1016/j.trsl.2016.07.007
  37. Ivashkin V.T., Kashukh E.A. Impact of L-carnitine and phosphatidylcholine containing products on the proatherogenic metabolite TMAO production and gut microbiome changes in patients with coronary artery disease. Voprosy pitaniia [Problems of Nutrition]. 2019; 88 (4): 25–33. DOI: https://doi.org/10.24411/00428833-201910038 (in Russian)
  38. Heianza Y., Ma W., Manson J.E., et al. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: A systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017; 6 (7). DOI: https://doi.org/10.1161 /JAHA.116.004947
  39. Zhu W., Gregory J.C., Org E., et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016; 165 (1): 111–24. DOI: https://doi.org/10.1016/j.cell.2016.02.011
  40. Seldin M.M., Meng Y, Qi H., et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-KB. J Am Heart Assoc. 2016; 5 (2): e002767. DOI: https://doi.org/10.1161/JAHA.115.002767
  41. Sergienko I.V., Malyshev P.P., Popova A.B., Nozadze D.N., Ansheles A.A., Khalimov Yu. Sh. Atherosclerosis and obesity: Textbook for medical universities. Moscow, 2021: 55 p. (in Russian)
  42. Grigor’eva I.N. Atherosclerosis and trimethylamine-N-oxide — the gut microbiota potential. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology]. 2022; 27 (9): 142–7. DOI: https://doi.org/10.15829/1560-4071-2022-5038 (in Russian)
  43. Schlaich M.P., Lambert E., Kaye D.M., Krozowski Z., Campbell D.J., Lambert G., et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension. 2004; 43 (2): 169–75.
  44. Blake G.J., Rifai N., Buring J.E., Ridker P.M. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation. 2003; 108 (24): 2993–9.
  45. Vieira E.L., Leonel A.J., Sad A.P., Beltrao N.R., Costa T.F., Ferreira T.M. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem. 2012; 23 (5): 430–6. DOI: https://doi.org/10.1016/j.jnutbio.2011.01.007
  46. Yang T., Santisteban M.M., Rodriquez V., et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015; 65 (6): 1331–40. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
  47. Pluznick J. Microbial short-chain fatty acids and blood pressure regulation. Curr Hypertens Rep. 2017; 19 (4): 25. DOI: https://doi.org/10.1007/s1 1906-017-0722-5
  48. Zubcevic J., Richards E.M., Yang T., Kim S., Sumners C., Pepine C.J., et al. Impaired autonomic nervous system-microbiome circuit in hypertension. Circ Res. 2019; 125 (1): 104–16. DOI: https://doi.org/10.1161/CIRCRESAHA.119.313965
  49. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014; 5 (2): 202–7. DOI: https://doi.org/10.4161/gmic.27492
  50. Natarajan N., Hori D., Flavahan S., Steppan J., Flavahan N.A., Berkowitz D.E., et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genom. 2016; 48 (11): 826–34. DOI: https://doi.org/10.1152/physio- lgenomics.00089.2016
  51. Tkacheva O.N., Kashtanova D.A., Boytsov S.A. Gut microbiota and cardiovascular risk factors. Part III. Lipid profile, carbohydrate metabolism and gut microbiota. Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular Therapy and Prevention]. 2015; 14 (6): 83–6. DOI: https://doi.org/10.15829/1728-8800-2015-6-83-86 (in Russian)
  52. Harrison D.G. The immune system in hypertension. Trans Am Clin Climatol Assoc. 2014; 125: 130–8. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.115.03624
  53. Barantsevich N.E., Konradi A.O., Barantsevich E.P. Arterial hypertension: the role of gut microbiota. Arterial’naya gipertenziya [Arterial Hypertension]. 2019; 25 (5): 460–6. https://doi.org/10.18705/1607-419X-2019-25-5-460-466 (in Russian)
  54. Marques F.Z., Nelson E.M., Chu P.Y., et al. High fibre diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in docasalt hypertensive mice. Circulation. 2017; 135 (10): 964–70. DOI: https://doi.org/10.1161/CIRCULATIONAHA.116.024545
  55. Health Canada. 2019. Canada’s food guide resources. Government of Canada. URL: https://food-guide.canada.ca/en/food-guide-snapshot
  56. Dietary Fiber: Essential for a Healthy Diet. Mayo Clinic site. 2018. URL: https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/fiber/art-20043983
  57. Bronovets I.N. Dietary fibers – an important part of a balanced healthy diet. Meditsinskie novosti [Medical News]. 2015; (10): 46–8. (in Russian)
  58. Wang X., Ouyang Y., Liu J., et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014; 349. DOI: https://doi.org/10.1136/bmj.g4490
  59. Partsernyak A.S., Khalimov Yu. Sh. Chronic inflammation and premature aging – two parallel processes in polymorbid cardiovascular pathology. Vestnik Rossiyskoy voenno-meditsinskoy akademii [Bulletin of the Russian Military Medical Academy]. 2019; 3 (67): 78–82. (in Russian)
  60. Popova A.Y. Methodological recommendations MP 2.3.1.0253-21 «Norms of physiological needs in energy and nutrients for various population groups of the Russian Federation». Moscow, 2021: 72 p. (in Russian)
  61. Yang T., Richards E.M., Pepine C.J., Raizada M.K. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol. 2018; 14 (7): 442–56. DOI: https://doi.org/10.1038/s41581-018-0018-2
  62. Vrieze A., Van Nood E., Holleman F., et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012; 143 (4): 913–6.e7. DOI: https://doi.org/10.1053/j.gastro.2012.06.031
  63. Qi Y., Kim S., Richards E.M., et al. Gut microbiota: potential for a unifying hypothesis for prevention and treatment of hypertension. Circ Res. 2017; 120 (11): 1724–6. DOI: https://doi.org/10.1161 / CIRCRESAHA.117.310734
  64. Kivimaki M., Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol. 2018; 5 (4): 215–29. DOI: https://doi.org/10.1038/nrcardio.2017.189
  65. Antropova O.N., Osipova I.V. Reactivity to psychoemotional stress: clinical aspects in hypertension. Arterial’naya gipertenziya [Arterial Hypertension]. 2018; 24 (2): 145–50. DOI: https://doi.org/10.18705/1607-419X-2018-24-2-145-150 (in Russian)
  66. Glushanko V.S., Orekhova L.I. Analysis of the problem the prevalence of modifiable risk factors of development of the circulatory system diseases. Sovremennye problemy zdravookhraneniya i meditsinskoy statistiki [Modern Problems of Healthcare and Medical Statistics]. 2019; (2): 363–80. (in Russian)
  67. Nikolaev V.I., Denisenko N.P., Denisenko M.D., Gorziy T.S. Peculiarities of emotional stress development in persons with various types of emotional balance and hemodynamics. Pediatr [Pediatrician]. 2018; (6): 51–6. (in Russian)
  68. Bagnetova E.A. Features of adaptation, psychological and functional state of the human body in the conditions of the North. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost’ zhiznedeaytel’nosti [Bulletin of the Russian University of Peoples’ Friendship. Series: Ecology and Life Safety]. 2014; (4): 63–9. (in Russian)
  69. Gerasimenko D.K. The role of catecholic amines in adaptive reactions of the cardiovascular system to physical exertion. Voprosy nauki i obrazovaniya [Problems of Science and Education] 2018; 7 (19): 23–5. (in Russian)
  70. Strakhova L.A., Blinova T.V., Troshin V.V., Kolesov S.A., Rakhmanov R.S., Umnyagina I.A. The evaluation of oxidative stress as a criterion of the risk of disease development in working people of various ages. Meditsina truda i promyshlennaya ekologiya [Occupational Medicine and Industrial Ecology]. 2018; 2 (14): 61–5. (in Russian)
  71. Burko N.V., Avdeeva I.V., Oleynikov V.E., Boytsov S.A. The concept of early vascular aging. Ratsional’naya farmakoterapiya v kardiologii [Rational Pharmacotherapy in Cardiology]. 2019; 15 (5): 742–9. DOI: https://doi.org/10.20996/1819-6446-2019-15-5-742-749 (in Russian)
  72. Sofi F., Cesari F., Casini A., et al. Insomnia and risk of cardiovascular disease: a meta-analysis. Eur J Prev Cardiol. 2014; 21: 57–64.
  73. Laugsand L.E., Vatten L.J., Platou C., et al. Insomnia and the risk of acute myocardial infarction: A population study. Circulation. 2011; 124: 2073–81.
  74. Wu M.P., Lin H.J., Weng S.F., et al. Insomnia subtypes and the subsequent risks of stroke: Report from a nationally representative cohort. Stroke. 2014; 45: 1349–54.
  75. Novichkova N.I., Kallistov D. Yu., Romanova E.A. Sleep disorders and chronic stress as cardiovascular risk factors. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology]. 2015; 6 (122): 20–4. DOI: http://dx.doi.org/10.15829/1560-4071-2015-06-20-24 (in Russian)
  76. Ibragimova E.E. monitoring the stress level of students as an approach to preventing violations of regulatory mechanisms. Uchenye zapiski Krymskogo federal’nogo universiteta imeni V.I. Vernadskogo. Sotsiologiya. Pedagogika. Psikhologiya [Scientific notes of the V.I. Vernadsky Crimean Federal University. Pedagogy. Psychology]. 2019; (2): 83–90. (in Russian)
  77. Aflitonov M.A., Partsernyak S.A., Mironenko A.N., Partsernyak A.S., Topanova A.A. Melatonin metabolism in polymorbid cardiovascular pathology with anxiety-depressive disorders in young and middle-aged men. Vestnik Severo-Zapadnovgo gosudarstvennovo meditsinskogo universiteta imeni I.I. Mechnikova [Bulletin of the North-Western State Medical University named after I.I. Mechnikov]. 2015; (3): 60–5. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Andrey G. Obrezan
MD, Professor, Head of the Hospital Therapy Department of the Saint Petersburg State University, Chief Physician of SOGAZ MEDICINE Clinical Group, St. Petersburg, Russian Federation

Journals of «GEOTAR-Media»