To the content
4 . 2022

The role of mitochondrial dysfunction in the pathogenesis of atrial fibrillation

Abstract

Atrial fibrillation (AF) is the most common and progressive cardiac arrhythmia in the world and it associated with serious complications such as heart failure and ischemic stroke. Despite the progress in the treatment of AF, mainly using invasive methods, many questions regarding the arrhythmia pathological mechanisms and methods for its prevention still remain unanswered.

The development of AF requires functional changes in the atrial myocardium, which results from disturbed ion fluxes and altered cardiomyocytes electrophysiology.

The electrical instability and electrical remodeling underlying the arrhythmia may result from cellular energy deficiency and oxidative stress, which are caused by mitochondrial dysfunction.

The significance of mitochondrial dysfunction AF in the pathogenesis has not been fully elucidated. Therefore, there is an urgent need to study the molecular mechanisms that cause AF. High rate of atrial activation, which occures due to AF, requires a high energy metabolism. Therefore mitochondrial dysfunction plays a significant role in the pathophysiology of AF is likely.

It is well known that mitochondria play a central role in the functioning of cardiomyocytes as they produce energy to maintain the mechanical and electrical function of the heart. The resulting information on the molecular mechanisms underlying mitochondrial dysfunction is increasingly being positioned as a factor contributing to the loss of cardiomyocyte function and AF.

Given the high prevalence of this arrhythmia, the study of the role of mitochondrial disorders in AF is likely to chart the way to new therapeutic and diagnostic targets.

This review presents the latest data on the role of mitochondrial dysfunction in the development of AF.

Keywords:atrial fibrillation; ion channels; cardiac remodeling; reactive oxygen species; mitochondrial dysfunction

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Tatarsky B.A., Napalkov D.A., Kazennova N.V. The role of mitochondrial dysfunction in the pathogenesis of atrial fibrillation. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2022. Т. 10, № 3. С. 48–53. DOI: https://doi.org/10.33029/2309-1908-2022-10-3-48-53

References

1. Zoni-Berisso M., Lercari F., Carazza T., et al. Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol. 2014; 6: 213–20. DOI: https://doi.org/10.2147/CLEP.S47385

2. Kjerpeseth L.J., Igland J., Selmer R., et al. Prevalence and incidence rates of atrial fibrillation in Norway 2004–2014. Heart 2021; 107: 201–7. DOI: https://doi.org/10.1136/heartjnl-2020-316624

3. Olesen M.S., Andreasen L., Jabbari J., et al. Very early-onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation. Heart Rhythm. 2014; 11: 246–51. DOI: https://doi.org/10.1016/j.hthm.2013.10.034

4. Saguner A.M., Maurer T., Wissner E., et al. Catheter ablation of atrial fibrillation in very young adults: a 5-year follow-up study. Europace. 2016; 20: 58–64. DOI: https://doi.org/10.1093/europace/euw378

5. Lau D.H., Schotten U., Mahajan R., et al. Novel mechanisms in the pathogenesis of atrial fibrillation: Practical applications. Eur Heart J. 2015; 37: 1573–81. DOI: https://doi.org/10.1093/eurheartj/ehv375

6. Wolowacz S.E., Samuel M., Brennan V.K., et al. The cost of illness of atrial fibrillation: a systematic review of the recent literature. Europace. 2011; 13: 1375–85. DOI: https://doi.org/10.1093/europace/eur194

7. Thiedemann K.U., Ferrans V.J. Left atrial ultrastructure in mitral valvular disease. Am J Pathol. 1977; 89: 575–604. PMID: 145805.

8. Harada M., Tadevosyan A., Qi X., et al. Atrial fibrillation activates AMP-dependent protein kinase and its regulation of cellular calcium handling: potential role in metabolic adaptation and prevention of progression. J Am Coll Cardiol. 2015; 66: 47–58. DOI: https://doi.org/10.1016/j.jacc.2015.04.056

9. Scholman K.T., Meijborg V.F., Galvez-Monton C., et al. From genome-wide association studies to cardiac electrophysiology: through the maze of biological complexity. Front Physiol. 2020; 11: 557. DOI: https://doi.org/10.3389/fphys.2020.00557

10. Pandit S.V., Jalife J. Rotors and the dynamics of cardiac fibrillation. Circ Res. 2013; 112: 849–62. DOI: https://doi.org/10.1161/CIRCRESAHA.111.300158

11. Pellman J., Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol. 2015; 5: 649–65. DOI: https://doi.org/10.1002/cphy.c140047

12. Voigt N., Heijman J., Wang Q., et al. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation. 2014; 129: 145–56. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.006641

13. Khan R. Identifying and understanding the role of pulmonary vein activity in atrial fibrillation. Cardiovasc Res. 2004; 64: 387–94. DOI: https://doi.org/10.1016/j.cardiores.2004.07.025

14. Andrade J., Khairy P., Dobrev D., et al. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014; 114: 1453–68. DOI: https://doi.org/10.1161/CIRCRESAHA.114.303211

15. Vlachos K., Letsas K.P., Korantzopoulos P., et al. Prediction of atrial fibrillation development and progression: current perspectives. World J Cardiol. 2016; 8: 267–76. DOI: https://doi.org/10.4330/wjc.v8.i3.267

16. Kohlhaas M., Nickel A.G., Maack C. Mitochondrial energetics and calcium coupling in the heart. J Physiol. 2017; 595: 3753–63. DOI: https://doi.org/10.1113/JP273609

17. Hassanpour S.H., Dehghani M.A., Karami S.Z. Study of respiratory chain dysfunction in heart disease. J Cardiovasc Thorac Res. 2018; 10: 1–13. DOI: https://doi.org/10.15171/jcvtr. 2018.01

18. Liu J.C. Is MCU dispensable for normal heart function? J Mol Cell Cardiol. 2020; 143: 175–83. DOI: https://doi.org/10.1016/j.yjmcc.2020.04.028

19. Wiersma M., van Marion D.S., Wust R.I., et al. Mitochondrial dysfunction underlies cardiomyocyte remodeling in experimental and clinical atrial fibrillation. Cells. 2019; 8 (10): 1202. DOI: https://doi.org/10.3390/cells8101202

20. Yoshida H., Bao L., Kefaloyianni E., et al. AMP activated protein kinase connects cellular energy metabolism to KATP channel function. J Mol Cell Cardiol. 2012; 52: 410–8. DOI: https://doi.org/10.1016/j.yjmcc.2011.08.013

21. Liu M., Liu H., Dudley S.C. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ Res. 2010; 107: 967–74. DOI: https://doi.org/10.1161/CIRCRESAHA.110.22067

22. Shao Q., Meng L., Lee S., et al. Empagliflozin, a sodium glucose cotransporter 2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019; 18: 165. DOI: https://doi.org/10.1186/s12933-019-0964-4

23. Yang K.C., Bonini M.G., Dudley S.C. Mitochondria and arrhythmias. Free Radic Biol Med. 2014; 71: 351–61. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.03.033

24. Muszyńsk P., Bonda T.A. Mitochondrial dysfunction in atrial fibrillation — mechanisms and pharmacological interventions. J Clin Med. 2021; 10 (11): 2385. DOI: https://doi.org/10.3390/jcm10112385

25. Kowaltowski A.J., de Souza-Pinto N.C., Castilho R.F., et al. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009; 47: 333–43. DOI: https://doi.org/10.1016/j.freeradbiomed.2009.05.004

26. Harada M., Melka J., Sobue Y., et al. Metabolic considerations in atrial fibrillation-mechanistic insights and therapeutic opportunities. Circ J. 2017; 81 (12): 1749–57. DOI: https://doi.org/10.1253/circj.CJ-17-1058

27. Tsuboi M., Hisatome I., Morisaki T., et al. Mitochondrial DNA deletion associated with the reduction of adenine nucleotides in human atrium and atrial fibrillation. Eur J Clin Invest. 2001; 31: 489–96. DOI: https://doi.org/10.1046/j.1365-2362.2001.00844.x

28. Liu M., Liu H., Dudley S.C. Jr. Reactive oxygen species originating from mitochondria regulate the cardiac sodium channel. Circ Res. 2010; 107 (8): 967–74. DOI: https://doi.org/10.1161/CIRCRESAHA.110.220673

29. Wagner S., Ruff H.M., Weber S.L., et al. Reactive oxygen species-activated Ca/calmodulin kinase IId is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circ Res. 2011; 108: 555–65. DOI: https://doi.org/10.1161/CIRCRESAHA.110.221911

30. Cooper L.L., Li W., Lu Y., et al. Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts. J Physiol. 2013; 591: 5895–911. DOI: https://doi.org/10.1113/jphysiol.2013.260521

31. Yang K.C., Bonini M.G., Dudley S.C. Mitochondria and arrhythmias. Free Radic Biol Med. 2014; 71: 351–61. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.03.033

32. Huang C.L. Murine electrophysiological models of cardiac arrhythmogenesis. Physiol Rev. 2017; 97: 283–409. DOI: https://doi.org/10.1152/physrev.00007.2016

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Andrey G. Obrezan
MD, Professor, Head of the Hospital Therapy Department of the Saint Petersburg State University, Chief Physician of SOGAZ MEDICINE Clinical Group, St. Petersburg, Russian Federation

Journals of «GEOTAR-Media»