To the content
4 . 2022

Defeat of the cardiovascular system in the new coronavirus infection COVID 19

Abstract

The presented literature review is devoted to the problem associated with the defeat of the cardiovascular system in COVID‑19. The main mechanisms of the cardiovascular complications development, as well as factors affecting the course and prognosis of this pathology are considered in details. The information presented may be useful for specialists of various profiles to choose tactics for the management of patients infected with SARS-CoV‑2.

Keywords:COVID 19; cardiovascular system; heart; endothelial dysfunction

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

For citation: Berezovskaya G.A., Petrishchev N.N., Volkova E.V., Karpenko M.A., Khalimov Yu.Sh. Defeat of the cardiovascular system in the new coronavirus infection COVID‑19. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2022; 10 (4): 37–47. DOI: https://doi.org/10.33029/2309-1908-2022-10-4-37-47 (in Russian)

References

1. World Health Organization. The global burden of disease: 2004 update. World Health Organization, 2008: 146 p. URL: https://apps.who.int/iris/handle/10665/43942

2. Megiorni F., Pontecorvi P., Gerini G., Anastasiadou E., Marchese C., Ceccarelli S. Sex-related factors in cardiovascular complications associated to COVID-19. Biomolecules. 2022; 12 (1): 21. DOI: https://doi.org/10.3390/biom12010021

3. Xu X., Chen P., Wang J., et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020; 63 (3): 457–60. DOI: https://doi.org/10.1007/s11427-020-1637-5

4. Jin Y., Yang H., Ji W., et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020; 12 (4): 372. DOI: https://doi.org/10.3390/v12040372

5. Varg Z., Flammer A.J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395: 1417–8.

6. Petrishchev N.N., Khalepo O.V., Vavilenkova Y.A., et. al. COVID-19 and vascular disorders (literature review). Regionarnoe krovoobrashchenie i mikritsirkulyatsiya [Regional Blood Circulation and Microcirculation] 2020; 19 (3): 90–8. DOI: https://doi.org/10.24884/1682-6655-2020-19-3-90-98 (in Russian)

7. Shilts J., Crozier T.W.M., Greenwood E.J.D., et al. No evidence for basigin/CD 147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep. 2021; 11: 413. DOI: https://doi.org/10.1038/s41598-020-80464-1

8. Barrett T.J., Bilaloglu S., Cornwell M., et al. Platelets contribute to disease severity in COVID-19. J Thromb Haemost. 2021; 19 (12): 3139–53. DOI: https://doi.org/10.1111/jth.15534

9. Raj V.S., Mou H., Smits S.L., et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495 (7440): 251–4. DOI: https://doi.org/10.1038/nature12005

10. Qi F., Qian S., Zhang S., et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020; 526 (1): 135–40. DOI: https://doi.org/10.1016/j.bbrc.2020.03.044

11. Alexander Y., Osto E., Schmidt-Trucksass A., et al. Endothelial function in cardiovascular precision medicine: a position paper on behalf of the European Society of Cardiology. Cardiovasc Res. 2020; 117 (1): 29–42. DOI: https://doi.org/10.1093/cvr/cvaa085

12. Evans P.C., Ed Rainger G., Mason J.С., et al. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020; 116 (14): 2177–84. DOI: https://doi.org/10.1093/cvr/cvaa230

13. Gurin A.M. Structural and functional features of human cardiac muscle tissue. Sovremennye naukoemkie tekhnologii [Modern Highly Scientific Technologies]. 2009; 11 (suppl): 28–40. (in Russian)

14. Menter T., Haslbauer J.D., Nienhold R., et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020; 77 (2): 198–209.

15. Whittaker E., Bamford A., Kenny J., et al.; PIMS-TS Study Group and EUCLIDS and PERFORM Consortia. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA. 2020; 324 (3): 259–69. DOI: https://doi.org/10.1001/jama.2020.10369

16. Chilazi M., Duffy E.Y., Thakkar A., et al. COVID and cardiovascular disease: what we know in 2021. Curr Atheroscler Rep. 2021; 23 (7): 37. DOI: https://doi.org/10.1007/s11883-021-00935-2

17. Tavazzi G., Pellegrini C., Maurelli M., et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020; 22 (5): 911–5.

18. Zhou Y., Fu B., Zheng X., et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020; 7 (6): 998–1002. DOI: https://doi.org/10.1093/nsr/nwaa041

19. Kubasiak L.A., Hernandez O.M., Bishopric N.H., et al. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA. 2002; 99: 12 825–30.

20. Han H., Xie L., Liu R., et al. Analysis of heart injury laboratory parameters in 273 COVID-19 patients in one hospital in Wuhan, China. J Med Virol. 2020; 92 (7): 819–23. DOI: https://doi.org/10.1002/jmv.25809

21. Wehbe Z., Hammoud S.H., Yassine H.M., et al. Molecular and biological mechanisms underlying gender differences in COVID-19 severity and mortality. Front Immunol. 2021; 12: 659339. DOI: https://doi.org/10.3389/fimmu.2021.659339

22. Brojakowska A., Narula J., Shimony R., et al. Clinical implications of SARS-CoV-2 interaction with renin angiotensin system: JACC Review Topic of the Week. J Am Coll Cardiol. 2020; 75 (24): 3085–95. DOI: https://doi.org/10.1016/j.jacc.2020.04.028

23. Gupta A., Madhavan M.V., Sehgal K., et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020; 26 (7): 1017–32. DOI: https://doi.org/10.1038/s41591-020-0968-3

24. Ishyama Y., Gallagher P.E., Averill D.B., et al. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004; 43: 970–6.

25. Wang K., Chen W., Zhang Z., et al. CD 147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020; 5 (1): 283. DOI: https://doi.org/10.1038/s41392-020-00426-x

26. Castiello T., Georgiopoulos G., Finocchiaro G., et al. COVID-19 and myocarditis: a systematic review and overview of current challenges. Heart Fail Rev. 2022; 27 (1): 251–61. DOI: https://doi.org/10.1007/s10741-021-10087-9

27. Escher F., Pietsch H., Aleshcheva G., et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020; 7 (5): 2440–7.

28. Trogen B., Gonzalez F.J., Shust G.F. COVID-19-associated myocarditis in an adolescent. Pediatr Infect Dis J. 2020; 39 (8): e204–5. DOI: https://doi.org/10.1097/INF.0000000000002788

29. Cryer M.J., Farhan S., Kaufmann C.C., et al. Prothrombotic milieu, thrombotic events and prophylactic anticoagulation in hospitalized COVID-19 positive patients: a review. Clin Appl Thromb Hemost. 2022; 28: 10760296221074353. DOI: https://doi.org/10.1177/10760296221074353

30. Salamanca J., Díez-Villanueva P., Martínez P., et al. COVID-19 «fulminant myocarditis» successfully treated with temporary mechanical circulatory support. JACC Cardiovasc Imaging. 2020; 13 (11): 2457–9. DOI: https://doi.org/10.1016/j.jcmg.2020.05.003

31. Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054–62.

32. Caro-Codon J., Rey J.R., Buno A., et al.; CARD-COVID Investigators. Characterization of NT-proBNP in a large cohort of COVID-19 patients. Eur J Heart Fail. 2021; 23 (3): 456–64. DOI: https://doi.org/10.1002/ejhf.2095

33. Sorrentino S., Cacia M., Leo I., et al. B-type natriuretc peptide as biomarker of COVID-19 disease severity – a meta-analysis. J Clin Med. 2020; 9: 2957.

34. Sala S., Peretto G., Gramegna M., et al. Acute myocarditis presenting as a reverse tako-tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020; 41 (19): 1861–2. DOI: https://doi.org/10.1093/eurheartj/ehaa286

35. Meyer P., Degrauwe S., Van Delden C., et al. Typical takotsubo syndrome triggered by SARS-CoV-2 infection. Eur Heart J. 2020; 41 (19): 1860. DOI: https://doi.org/10.1093/eurheartj/ehaa306

36. Kumar N.R., Patel S., Norwood B. Subacute cardiac tamponade in a COVID-19 patient despite negative testing. Cureus. 2022; 14 (9): e29090. DOI: https://doi.org/10.7759/cureus.29090

37. Tung-Chen Y. Acute pericarditis due to COVID-19 infection: an underdiagnosed disease? Med Clin (Barc). 2020; 155 (1): 44–5. DOI: https://doi.org/10.1016/j.medcli.2020.04.007

38. Miro Ò., Sabate M., Jimenez S., et al.; Spanish Investigators on Emergency Situations TeAm (SIESTA) network; SIESTA network. A case-control, multicentre study of consecutive patients with COVID-19 and acute (myo)pericarditis: incidence, risk factors, clinical characteristics and outcomes. Emerg Med J. 2022. DOI: https://doi.org/10.1136/emermed-2020-210977 Online ahead of print.

39. Gopinathannair R., Merchant F.M., Lakkireddy D.R., et al. COVID-19 and cardiac arrythmias: a global perspective on arrythmias characteristics and management strategies. J Interv Card Electrophysiol. 2020; 59 (2): 329–36.

40. Duckheim M., Schreieck J. COVID-19 and cardiac arrhythmias. Hamostaseologie. 2021; 41 (5): 372–8. DOI: https://doi.org/10.1055/a-1581-6881

41. Lazzerini P.E., Boutjdir M., Capecchi P.L. COVID-19, arrythmic risk, and inflammation: mind the gap! Circulation. 2020; 142 (1): 7–9.

42. Dherange P., Lang J., Qian P., et al. Arrhythmias and COVID-19: a review. JACC Clin Electrophysiol. 2020; 6 (9): 1193–204.

43. Shi S., Qin M., Shen B., et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020; 5 (7): 802–10.

44. Matvienko O. Yu., Korsakova N.E., Lerner A.A., et al. Plasma hemostasis in patients with coronavirus infection caused by SARS-COV-2. Tromboz, gemostaz i reologiya [Thrombosis, Hemostasis and Rheology]. 2020; (4): 52–6. DOI: https://doi.org/10.25555/THR.2020.4.0945 (in Russian)

45. Matvienko O. Yu., Smirnova O.A., Lerner A.A., et al. Assessment of the state of the hemostasis system in patients with coronavirus infection using a thrombin generation test. Byulleten’ meditsinskoy nauki [Bulletin of Medical Science]. 2021: 2 (22): 95–8. DOI: https://doi.org/10.31684/25418475_2021_2_95 (in Russian)

46. Tam C.F., Cheung K.S., Lam S., et al. Impact of coronavirus disease 2019 (COVID-19) outbreak on ST-segment-elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes. 2020; 13 (4): e006631.

47. Basbus L., Lapidus M.I., Martingano I., et al. Neutrophil to lymphocyte ratio as a prognostic marker in COVID-19. Medicina (B Aires). 2020; 80 (suppl 3): 31–6.

48. Chopra V., Flanders S.A., O’Malley M., et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann Intern Med. 2021; 174 (4): 576–8. DOI: https://doi.org/10.7326/M20-5661

49. Johansson M., Stahlberg M., Runold M., et al. Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic Tachycardia syndrome: the Swedish experience. JACC Case Rep. 2021; 3 (4): 573–80. DOI: https://doi.org/10.1016/j.jaccas.2021.01.009

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Andrey G. Obrezan
MD, Professor, Head of the Hospital Therapy Department of the Saint Petersburg State University, Chief Physician of SOGAZ MEDICINE Clinical Group, St. Petersburg, Russian Federation

Journals of «GEOTAR-Media»