To the content
2 . 2021

Cardio-microcurrent device for chronic heart failure: first-in-human clinical study

Abstract

Aims Most devices for treating ambulatory Class II and III heart failure are linked to electrical pulses. However, a steady electric potential gradient is also necessary for appropriate myocardial performance and may be disturbed by structural heart diseases. We investigated whether chronic application of electrical microcurrent to the heart is feasible and safe and improves

cardiac performance. The results of this study should provide guidance for the design of a two-arm, randomized, controlled Phase II trial.

Methods and results. This single-arm, non-randomized pilot study involved 10 patients (9 men; mean age, 62±12 years) at two sites with 6 month follow-up. All patients had New York Heart Association (NYHA) Class III heart failure and non-ischaemic dilated cardiomyopathy, with left ventricular ejection fraction (LVEF) <35%. A device was surgically placed to deliver a constant microcurrent to the heart. The following tests were performed at baseline, at hospital discharge, and at six time points during follow-up: determination of LVEF and left ventricular end-diastolic/end-systolic diameter by echocardiography; the 6 min walk test; and assessment of NYHA classification and quality of life (36-Item Short-Form Health Survey questionnaire). Microcurrent application was feasible and safe; no device-related or treatment related adverse events occurred. During follow-up, rapid and significant signal of efficacy (p<0.005) was present with improvements in LVEF, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and distance walked. For eight patients, NYHA classification improved from Class III to Class I (for seven, as early as 14 days post-operatively); for one, to Class II; and for one, to Class II/III. 36-Item Short-Form Health Survey questionnaire scores also improved highly significantly.

Conclusions. Chronic application of microcurrent to the heart is feasible and safe and leads to a rapid and lasting improvement in heart function and a near normalization of heart size within days. The NYHA classification and quality of life improve just as rapidly.

Keywords:heart failure, electrical microcurrent, electro-osmosis, electric potential gradient

Kosevic D., Wiedemann D., Vukovic P., Ristic V., Riebandt J., Radak U., Brandes K., Goettel P., Duengen H.-D., Tahirovic E., Kottmann T., Voss H.W., Zdravkovic M., Putnik S., Schmitto J.D., Mueller J., Rame J.E., Peric M. Cardio-microcurrent device for chronic heart failure: first-in-human clinical study. ESC Heart Failure 2021; 8: 962–970.

Литература/References

1. Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.P., Jankowska E.A., Jessup M., Linde C., Nihoyannopoulos P., Parissis J.T., Pieske B., Riley J.P., Rosano G.M.C., Ruilope L.M., Ruschitzka F., Rutten F.H., van der Meer P., ESC Scientific Document Group. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016; 37: 2129–200.

2. Yancy C.W., Jessup M., Bozkurt B., Butler J., Casey D.E., Colvin M.M., Drazner M.H., Filippatos G.S., Fonarow G.C., Givertz M.M., Hollenberg S.M. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the man-agement of heart failure: a report of the American College of Cardiology / American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2013; 128: e240–327.

3. Borggrefe M.M., Lawo T., Butter C., Schmidinger H., Lunati M., Pieske B., Misier A.R., Curnis A., Bocker D., Remppis A., Kautzner J., Stuhlinger M., Leclerq C., Taborsky M., Frigerio M., Parides M., Burkhoff D., Hindricks G. Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J. 2008; 29: 1019–28.

4. Moss A.J., Hall W.J., Cannom D.S., Klein H., Brown M.W., Daubert J.P., Estes N.A.M. III, Foster E., Greenberg H., Higgins S.L., Pfeffer M.A., Solomon S.D., Wilber D., Zareba W. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009; 361: 1329–38.

5. Estep J.D., Starling R.C., Horstmanshof D.A., Milano C.A., Selzman C.H., Shah K.B., Loebe M., Moazami N., Long J.W., Stehlik J., Kasirajan V., Haas D.C., O’Connell J.B., Boyle A.J., Farrar D.J., Rogers J.G., ROADMAP Study Investigators. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients. J Am Coll Cardiol. 2015; 66: 1747–61.

6. Ambardekar A.V., Kittleson M.M., Palardy M., Mountis M.M., Forde-McLean R.C., DeVore A.D., Pamboukian S.V., Thibodeau J.T., Teuteberg J.J., Cadaret L., Xie R., Taddei-Peters W., Naftel D.C., Kirklin J.K., Stevenson L.W., Stewart G.C. Outcomes with ambulatory advanced heart failure from the Medical Arm of Mechanically Assisted Circulatory Support (MedaMACS) Registry. J Heart Lung Transplant. 2019; 38: 408–17.

7. Stehlik J., Mountis M., Haas D., Palardy M., Ambardekar A.V., Estep J.D., Ewald G., Russell S.D., Robinson S., Jorde U., Taddei-Peters W.C., Jeffries N., Richards B., Khalatbari S., Spino C., Baldwin J.T., Mann D., Stewart G.C., Aaronson K.D., REVIVAL Investigators. Quality of life and treatment preference for ventricular assist device therapy in ambulatory advanced heart failure: a report from the REVIVAL study. J Heart Lung Transplant. 2020; 39: 27–36.

8. Potapov E.V., Antonides C., Crespo-Leiro M.G., Combes A., Färber G., Hannan M.M., Kukucka M., de Jonge N., Loforte A., Lund L.H., Mohacsi P., Morshuis M., Netuka I., Özbaran M., Pappalardo F., Scandroglio A.M., Schweiger M., Tsui S., Zimpfer D., Gustafsson F. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg. 2019; 56: 230–70.

9. Caraballo C., Desai N.R., Mulder H., Alhanti B., Wilson F.P., Fiuzat M., Felker G.M., Piña I.L., O’Connor C.M., Lindenfeld J., Januzzi J.L. Clinical implications of the New York Heart Association classification. J Am Heart Assoc. 2019; 8: e014240.

10. Biton Y., Rosero S., Moss A., Zareba W., Kutyifa V., Baman J., Barsheshet A., McNitt S., Polonsky B., Goldenberg I. Long-term survival with implantable cardioverter-defibrillator in different symptomatic functional classes of heart failure. Am J Cardiol. 2018; 121: 615–20.

11. Noor M.R., Lane R.E., Dar O. Cardiac Resynchronization Therapy for Heart Failure. In Raja S., (ed). Cardiac Surgery. Cham: Springer International Publishing, 2020. DOI: https://doi.org/10.1007/978-3-030-24174-2_66

12. Cleland J.G., Abraham W.T., Linde C., Gold MR., Young J.B., Claude Daubert J., Sherfesee L., Wells G.A., Tang A.S.L. An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur Heart J. 2013; 34: 3547–56.

13. Balla C., Cappato R. When to choose cardiac resynchronization therapy in chronic heart failure: type and duration of the conduction delay. Eur Heart J Suppl. 2019; 21: B31–B35.

14. Hernandez N., Huang D.T. Updated clinical evidence for effective cardiac resynchronization therapy in congestive heart failure and timing of implant. Card Electrophysiol Clin. 2019; 11: 55–65.

15. Starling R.C., Estep J.D., Horstmanshof D.A., Milano C.A., Stehlik J., Shah K.B., Bruckner B.A., Lee S., Long J.W., Selzman C.H., Kasirajan V., Haas D.C., Boyle A.J., Chuang J., Farrar D.J., Rogers J.G., ROADMAP Study Investigators. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients. JACC Heart Fail. 2017; 5: 518–27.

16. Samman-Tahhan A., Hedley J.S., McCue A.A., Bjork J.B., Georgiopoulou V.V., Morris A.A., Butler J., Kalogeropoulos A.P. INTERMACS profiles and outcomes among non-inotrope-dependent outpatients with heart failure and reduced ejection fraction. JACC Heart Fail. 2018; 6: 743–53.

17. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002; 166: 111–7.

18. McCaig C.D., Rajnicek A.M., Song B., Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev. 2005; 85: 943–78.

19. Robinson K.R. The responses of cells to electrical fields: a review. J Cell Biol. 1985; 101: 2023–7.

20. McCaig C.D., Song B., Rajnicek A.M. Electrical dimensions in cell science. J Cell Sci. 2009; 122: 4267–76.

21. McCaig C.D., Zhao M. Physiological electrical fields modify cell behaviour. Bioessays. 1997; 19: 819–26.

22. Liu Q., Song B. Electric field regulated signaling pathways. Int J Biochem Cell Biol. 2014; 55: 264–8.

23. Naclerio F., Seijo M., Karsten B., Brooker G., Carbone L., Thirkell J., Larumbe-Zabala E. Effectiveness of combining microcurrent with resistance training in trained males. Eur J Appl Physiol. 2019; 119: 2641–53.

24. Abraham W.T., Kuck K.-H., Goldsmith R.L., Lindenfeld J.A., Reddy V.Y., Carson P.E., Mann D.L., Saville B., Parise H., Chan R., Wiegn P., Hastings J.L., Kaplan A.J., Edelmann F., Luthje L., Kahwash R., Tomassoni G.F., Gutterman D.D., Stagg A., Burkhoff D., Hasenfuß G. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail. 2018; 6: 874–83.

25. Mentz R.J., Butler J. Cardiac contractility modulation: the next cardiac resynchronization therapy or another renal sympathetic denervation? J Card Fail. 2015; 21: 24–6.

26. Müller D., Remppis A., Schauerte P., Schmidt-Schweda S., Burkhoff D., Rousso B., Gutterman D., Senges J., Hindricks G., Kuck K.H. Clinical effects of long-term cardiac contractility modulation (CCM) in subjects with heart failure caused by left ventricular systolic dysfunction. Clin Res Cardiol. 2017; 106: 893–904.

27. Zile M.R., Lindenfeld J., Weaver F.A., Zannad F., Galle E., Rogers T., Abraham W.T. Barorefiex activation therapy in patients with heart failure with reduced ejection fraction. J Am Coll Cardiol. 2020; 76: 1–13.

28. Borggrefe M., Mann D.L. Cardiac contractility modulation in 2018. Circulation 2018; 138: 2738–40.

29. Zhao M., Song B., Pu J., Wada T., Reid B., Tai G., Wang F., Guo A., Walczysko P., Gu Y., Sasaki T., Suzuki A., Forrester J.V., Bourne H.R., Devreotes P.N., McCaig C.D., Penninger J.M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature. 2006; 442: 457–60.

30. Macfelda K., Kapeller B., Holly A., Podesser B.K., Losert U., Brandes K., Goettel P., Mueller J. Bioelectrical signals improve cardiac function and modify gene expression of extracellular matrix components: bioelectrical signals and heart failure. ESC Heart Fail. 2017; 4: 291–300.

31. Hoare J.I., Rajnicek A.M., McCaig C.D., Barker R.N., Wilson H.M. Electric fields are novel determinants of human macro-phage functions. J Leukoc Biol. 2016; 99: 1141–51.

32. Arnold C.E., Rajnicek A.M., Hoare J.I., Pokharel S.M., Mccaig C.D., Barker R.N., Wilson H.M. Physiological strength electric fields modulate human T cell activation and polarisation. Sci Rep. 2019; 9: 17604.

33. Lin F., Baldessari F., Gyenge C.C., Sato T., Chambers R.D., Santiago J.G., Butcher E.C. Lymphocyte electrotaxis in vitro and in vivo. J Immunol. 2008; 181: 2465–71.

34. Mann D.L., Barger P.M., Burkhoff D. Myocardial recovery and the failing heart. J Am Coll Cardiol. 2012; 60: 2465–72.

35. Simpson L.J., Reader J.S., Tzima E. Mechanical regulation of protein translation in the cardiovascular system. Front Cell Dev Biol. 2020; 8: 34.

36. Hedhli N., Pelat M., Depre C. Protein turnover in cardiac cell growth and survival. Cardiovasc Res. 2005; 68: 186–96.

37. Jeserich M., Föll D., Olschewski M., Kimmel S., Friedrich M.G., Bode C., Geibel. Evidence of myocardial edema in patients with nonischemic dilated cardiomyopathy. Clin Cardiol. 2012; 35: 371–6.

38. Dongaonkar R.M., Stewart R.H., Geissler H.J., Laine G.A. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc Res. 2010; 87: 331–9.

39. Ciutac A.M., Dawson D. The role of infiammation in stress cardiomyopathy. Trends Cardiovasc Med. 2020; S1050–1738(20)30042–6.

40. Gotloib L., Shostak A., Galdi P., Jaichenko J., Fudin R. Loss of microvascular negative charges accompanied by interstitial edema in septic rats’ heart. Circ Shock. 1992; 36: 45–56.

41. Mehta D., Malik A.B. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006; 86: 279–367.

42. Wiley D., Fimbres Weihs G. Electroosmosis. In: Drioli E., Giorno L. (eds). Encyclopedia of Membranes. Springer Berlin Heidelberg, Berlin, Heidelberg. 2015. DOI: https://doi.org/10.1007/978-3- 642-40872-4_2079-1

43. Pietak A., Levin M. Exploring instructive physiological signaling with the bioelectric tissue simulation engine. Front. Bioeng. Biotechnol. 2016; 4: 55.

44. Fischbarg J., Hernandez J.A., Rubashkin A.A., Iserovich P., Cacace V.I., Kusnier C.F. Epithelial fiuid transport is due to electro-osmosis (80%), plus osmosis (20%). J Membr Biol. 2017; 250: 327–33.

45. McLaughlin S., Poo M.M. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys J. 1981; 34: 85–93.

46. Andreev V.P. Cytoplasmic electric fields and electroosmosis: possible solution for the paradoxes of the intracellular transport of biomolecules. PLoS One. 2013; 8: e61884.

47. Li G.-R., Zhang M., Satin L.S., Baumgarten C.M. Biphasic effects of cell volume on excitation-contraction coupling in rabbit ventricular myocytes. Am J Physiol-Heart Circ Physiol. 2002; 282: H1270–H1277.

48. Desai K.V., Laine G.A., Stewart R.H., Cox C.S. Jr., Quick C.M., Allen S.J., Fischer U.M. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. Am J Physiol-Heart Circ Physiol. 2008; 294: H2428–H2434.

49. Wilcox J., Yancy C.W. Stopping medication for heart failure with improved ejection fraction. Lancet. 2019; 393: 8–10.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Andrey G. Obrezan
MD, Professor, Head of the Hospital Therapy Department of the Saint Petersburg State University, Chief Physician of SOGAZ MEDICINE Clinical Group, St. Petersburg, Russian Federation

Journals of «GEOTAR-Media»