To the content
2 . 2021

Atrial fibrillation associated with a new coronavirus infection: mechanisms and therapeutic approaches

Abstract

During the COVID-19 pandemic, the cardiac community faces a new challenge: coronaviruses myocardial damage. Despite epidemiological data linking COVID-19 to cardiovascular disease, not much is known about its effect on atrial fibrillation (AF) - the most common arrhythmia in clinical practice. For timely diagnosis and initiation of the earliest and the most adequate therapy, it is necessary to understand important pathophysiological mechanisms leading to AF in conditions of coronavirus infection. It is necessary to consider the potential proarrhythmic effects of antiarrhythmic and antiviral drugs, as well as the pharmacokinetic interactions of oral anticoagulants with them.

Keywords:atrial fibrillation, C0VID-19, thromboembolism, anticoagulant, myocarditis

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

For citation: Serezhina E.K., Obrezan A.G. Atrial fibrillation associated with a new coronavirus infection: mechanisms and therapeutic approaches. Kardiologiya: novosti, mneniya, obuchenie [Cardiology: News, Opinions, Training]. 2021; 9 (2): 14-20. DOI: https://doi.org/10.33029/2309-1908-2021-9-2-14-20 (in Russian)

REFERENCES

1. URL: https://covid19.who.int/

2. Madjid M., Safavi-Naeini P., Solomon S., Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System. JAMA Cardiology. 2020; 5 (7): 831–40. DOI: https://www.doi.org/10.1001/jamacardio.2020.1286

3. Kwenandar F., Japar K.V., Damay V., Hariyanto T.I., Tanaka M., Lugito N.P.H. Coronavirus disease 2019 and cardiovascular system: A narrative review. Int J Cardiol Heart Vasc. 2020; 29: 100557.

4. Inciardi R.M., Adamo M., Lupi L., Cani D.S., Di Pasquale M., Tomasoni D. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020; 41 (19): 1821–9.

5. Gopinathannair R., Merchant F.M., Lakkireddy D.R., Etheridge S.P., Feigofsky S., Han J.K. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020; 59 (2): 329–36.

6. Onder G., Rezza G., Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020; 323 (18): 1775–6.

7. Ambrus D.B., Benjamin E.J., Bajwa E.K., Hibbert K.A., Walkey A.J. Risk factors and outcomes associated with new-onset atrial fibrillation during acute respiratory distress syndrome. J Crit Care. 2015; 30 (5): 994–7.

8. Klein Klouwenberg P.M., Frencken J.F., Kuipers S., Ong D.S., Peelen L.M., van Vught L.A. Incidence, Predictors, and Outcomes of New-Onset Atrial Fibrillation in Critically Ill Patients with Sepsis. A Cohort Study. Am J Respir Crit Care Med. 2017; 195 (2): 205–11.

9. Walkey A.J., Hammill B.G., Curtis L.H., Benjamin E.J. Long-term outcomes following development of new-onset atrial fibrillation during sepsis. Chest. 2014; 146 (5): 1187–95.

10. URL: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID-19-Guidance

11. Taha M.E., Alsafi W., Taha M., Eljack A., Ibrahim H. Coronavirus Disease and New-Onset Atrial Fibrillation: Two Cases. Cureus. 2020; 12 (5): e8066.

12. Seecheran R., Narayansingh R., Giddings S., Rampaul M., Furlonge K., Abdool K. Atrial Arrhythmias in a Patient Presenting With Coronavirus Disease-2019 (COVID-19) Infection. J Investig Med High Impact Case Rep. 2020; 8: 2324709620925571.

13. Bhatla A., Mayer M.M., Adusumalli S., Hyman M.C., Oh E., Tierney A. COVID-19 and Cardiac Arrhythmias. Heart Rhythm. 2020; 17 (9): 1439–44.

14. Angeli F., Spanevello A., De Ponti R., Visca D., Marazzato J., Palmiotto G. Electrocardiographic features of patients with COVID-19 pneumonia. Eur J Intern Med. 2020; 78: 101–6.

15. Sala S., Peretto G., De Luca G., Farina N., Campochiaro C., Tresoldi M. Low prevalence of arrhythmias in clinically stable COVID-19 patients. Pacing Clin Electrophysiol. 2020; 43 (8): 891–3.

16. Chen Q., Xu L., Dai Y., Ling Y., Mao J., Qian J. Cardiovascular manifestations in severe and critical patients with COVID-19. Clin Cardiol. 2020; 43 (7): 796–802.

17. URL: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-covid-19.pdf?sfvrsn=5ae25bc7_4CdC-SRAJ

18. Turner A.J., Hiscox J.A., Hooper N.M. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004; 25 (6): 291–4.

19. Tortorici M.A., Walls A.C., Lang Y., Wang C., Li Z., Koerhuis D. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol. 2019; 26 (6): 481–9.

20. Chen Z., Mi L., Xu J., Yu J., Wang X., Jiang J. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 2005; 191 (5): 755–60.

21. South A.M., Diz D.I., Chappell M.C. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020; 318 (5): H1084–H1090.

22. Diz D.I., Garcia-Espinosa M.A., Gegick S., Tommasi E.N., Ferrario C.M., Ann Tallant E. Injections of angiotensin-converting enzyme 2 inhibitor MLN4760 into nucleus tractus solitarii reduce baroreceptor reflex sensitivity for heart rate control in rats. Exp Physiol. 2008; 93 (5): 694–700.

23. Xu P., Sriramula S., Lazartigues E. ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol. 2011; 300 (4): R804–R817.

24. Sahara M., Ikutomi M., Morita T., Minami Y., Nakajima T., Hirata Y. Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation. Cardiovasc Res. 2014; 101 (2): 236–46.

25. Simoes E.S.A.C., Teixeira M.M. ACE inhibition, ACE2 and angiotensin-(1–7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res. 2016; 107: 154–62.

26. Patel V.B., Oudit G.Y. Response to Comment on Patel et al. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes. 2016; 65: 85–95.

27. Thanassoulis G., Massaro J.M., O'Donnell C.J., Hoffmann U., Levy D., Ellinor P.T. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ Arrhythm Electrophysiol. 2010; 3 (4): 345–50.

28. Sepehri Shamloo A.D.N., Dinov B. Is epicardial fat tissue associated with atrial fibrillation recurrence after ablation? A systematic review and meta-analysis. Int J Cardiol Heart Vasc. 2019; 22: 132–8.

29. Serezhina E.K., Obrezan A.G. Cardiovascular Pathology in Patients with COVID-19. Kardiologiya [Cardiology]. 2020; 60 (8): 23–26. (in Russian) Сережина Е.К., Обрезан А.Г. Патофизиологические механизмы и нозологические формы сердечно-сосудистой патологии при COVID-19. Кардиология. 2020; 60 (8): 23–26. DOI: https://doi.org/10.18087/cardio.2020.8.n1215

30. Venkatesan B., Valente A.J., Prabhu S.D., Shanmugam P., Delafontaine P., Chandrasekar B. EMMPRIN activates multiple transcription factors in cardiomyocytes, and induces interleukin-18 expression via Rac1-dependent PI3K/Akt/IKK/NF-kappaB andMKK7/JNK/AP-1 signaling. J Mol Cell Cardiol. 2010; 49 (4): 655–6.

31. Krijthe B.P., Heeringa J., Kors J.A., Hofman A., Franco O.H., Witteman J.C. Serum potassium levels and the risk of atrial fibrillation: the Rotterdam Study. Int J Cardiol. 2013; 168 (6): 5411–5.

32. Luan Y., Guo Y., Li S., Yu B., Zhu S., Li S. Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease. Europace. 2010; 12 (12): 1713–8.

33. Racca V., Torri A., Grati P., Panzarino C., Marventano I., Saresella M. Inflammatory Cytokines During Cardiac Rehabilitation After Heart Surgery and Their Association to Postoperative Atrial Fibrillation. Sci Rep. 2020; 10 (1): 8618.

34. Yuan S., Lin A., He Q.Q., Burgess S., Larsson S.C. Circulating interleukins in relation to coronary artery disease, atrial fibrillation and ischemic stroke and its subtypes: A two-sample Mendelian randomization study. Int J Cardiol. 2020; 313: 99–104.

35. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet. 2020; 395 (10223): 497–506.

36. Madjid M., Vela D., Khalili-Tabrizi H., Casscells S.W., Litovsky S. Systemic infections cause exaggerated local inflammation in atherosclerotic coronary arteries: clues to the triggering effect of acute infections on acute coronary syndromes. Tex Heart Inst. J. 2007; 34 (1): 11–8.

37. Chen D., Li X., Song Q., Hu C., Su F., Dai J. Assessment of Hypokalemia and Clinical Characteristics in Patients With Coronavirus Disease 2019 in Wenzhou, China. JAMA Netw Open. 2020; 3 (6): e2011122.

38. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061–9.

39. Krijthe B.P., Heeringa J., Kors J.A., Hofman A., Franco O.H., Witteman J.C. Serum potassium levels and the risk of atrial fibrillation: the Rotterdam Study. Int J Cardiol. 2013; 168 (6): 5411–5.

40. Li B., Yang J., Zhao F., Zhi L., Wang X., Liu L. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109 (5): 531–538.

41. Pober J.S., Sessa W.C. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007; 7 (10): 803–15.

42. Teuwen L.A., Geldhof V., Pasut A., Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020; 20 (7): 389–91.

43. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395 (10234): 1417–8.

44. Guazzi M., Arena R. Endothelial dysfunction and pathophysiological correlates in atrial fibrillation. Heart. 2009; 95 (2): 102–6.

45. Hu W., Xie J., Zhu T., Meng G., Wang M., Zhou Z. Serum N-Acetylneuraminic acid is associated with atrial fibrillation and left atrial enlargement. Cardiol Res Pract. 2020; 2020: 1358098.

46. Mujovic N., Dobrev D., Marinkovic M., Russo V., Potpara T.S. The role of amiodarone in contemporary management of complex cardiac arrhythmias. Pharmacol Res. 2020; 151: 104521.

47. Goldschlager N., Epstein A.E., Naccarelli G.V., Olshansky B., Singh B., Collard H.R. A practical guide for clinicians who treat patients with amiodarone: 2007. Heart Rhythm. 2007; 4 (9): 1250–9.

48. Delle Karth G., Geppert A., Neunteufl T., Priglinger U., Haumer M., Gschwandtner M. Amiodarone versus diltiazem for rate control in critically ill patients with atrial tachyarrhythmias. Crit Care Med. 2001; 29 (6): 1149–53.

49. Ganatra S., Dani S.S., Shah S., Asnani A., Neilan T.G., Lenihan D. Management of Cardiovascular Disease During Coronavirus Disease (COVID-19) Pandemic. Trends Cardiovasc Med. 2020; 30 (6): 315–25.

50. Ribes A.V.-B.F., Mémier V., Poette M., Au-Duong J., Garcia C. Thromboembolic events and Covid-19. Advances in Biological. Regulation. 2020; 77: 100735.

51. Fogarty H., Townsend L., Ni Cheallaigh C., Bergin C., Martin-Loeches I., Browne P. More on COVID-19 coagulopathy in Caucasian patients. Br J Haematol. 2020; 189 (6): 1060–1.

52. Kirchhof P., Benussi S., Kotecha D., Ahlsson A., Atar D., Casadei B. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace. 2016; 18 (11): 1609–78.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Andrey G. Obrezan
MD, Professor, Head of the Hospital Therapy Department of the Saint Petersburg State University, Chief Physician of SOGAZ MEDICINE Clinical Group, St. Petersburg, Russian Federation

Journals of «GEOTAR-Media»